

TABLE OH CONTENS

MODZLL 518 INSTEUCTION MAIUAL

 NENT

GECTION IIL. ASEMBEY ATD ITITMILATIOT
BECTION IV. THEOM OS OMESTOM

SECIION VII. CONSOLIDATED PARIS LISIS

ACCESSORY DATA SUPPILED WITY THIS MNUAL IN PEAR COVRP POCNT:6 CODIES DAEMCIVE MSTRIAL NOTIEICATIOA FOEA 6 COPIES DWEDIIVE MTERTAL DMURU FOEA

IN GRPARSTE DR:MHING FOMDB:-
SITH
NUTBES

IMSTALIASIOJ DRSIING
T-68
STATEOM VITRJMG DIAGEMH
B-654
HODEL 518 WIRING DIAGPAS
CONTROL CIRCUISS - ACPOSS TEE LINE DIAGRSM
Ss-638 B-629
 EEX:crency RAX日

SECTION 1

> INSPECTION OF RECEIVED MATERIAL RE-ASSEMBLY OF PARTS REMOVED FOI SHIPMENI - CLAIMS FOR BREAKAGE IN SHIPNENT.

1. INSFECTION OF RECEIVED MATERTAI

Received material should be carefully inspected at the time of uncrating for evidence of damage or breaking due to careless handling in transit. Care and good sense should.be used in the process of unpacking or uncrating the equipment. Hasty use of improper tools such as crawbars, etc., may easily result in damage to the enclosed equipment. Be sure to note and follow externally marked instructions such as, "This End up" or "Open This End", etc. All equipment is carefully packed at the factory to insure safe delivery with reasonably careful handling. When removing items from packing material check item by item against the enclosed pecking list for errors or short shipment.

2. CLAIMS FOR BREAKAGE IN SHIPMENT

In cases of damage to equipment cue to faulty handing in shipment, notify carrier immediately leaving broken or damaged item or items exactly as found in package. Do not destroy or remove any of the wrappings or protective material involved in the wrapping of the damaged iten. Carrier companies will not accept claims for "Damage in Shipment" unless they can inspect the damaged item and its associated packing material. Claims must usually be made. within five days of receipt of shipment.

GENERAL DESCRIPTION OF EQUIPMENT

A. Generel Description

The REL Model 518 FM Broadcast Transmitter is designed to deliver 1000 watts of radio frequency power at any selected frequency from 88 to 108 megacycles. Modulation is accomplished by the Armstrong Dual Channel Phase Shift method, the modulam tor being an integral part of the transmitter.

The equipment is completely housed in a vertical steel cabinet normally finished in two tone green lacquer with chrome trim. The cabinet is $84^{\prime \prime}$ high, $40^{\prime \prime}$ wide and $36^{\prime \prime}$ deep.

Various functional units in the equipment have been sectionalized on individual chassis. Each separate chassis is hinged at one end and may be swung out for convenient inspection or maintenance work.

B. Primary Power Connections

Refer to drawing B-654 which shows details of the transmitter invut terminal. boards and connections.

208/230 volts, 60 cycles single phase should be terminated at the terminals marked A, B, using $\$ 10$ ANG wire or larger. Primary load for rated output is approximately 3700 volt amperes at 89% power factor. 110 to 120 volts single phase should be connected to terminals 53 and 54 using fl2 AWG wires for powering the convenience outlet and interior lighting.

A good low resistance ground should be connected to the terminal marked "O" on the terminal board which is located on the left vertical frame member just inside the lower front panel.

C. Outout Transmission Line Connections

The equipment is supplied for operation with a single $7 / 8^{\prime \prime}$ coaxial transmission line which enters the top of the cabinet. Location of this point may be determined by reference to outline craving T-68.

D. Accessory Data

A 600 ohm balanced audio input line must be connected to the twin conauctor jack, which is located behind the lower front panel on the right hand corner post. This line should be of the insulated shielded twisted pair type and should avoid proximity to high level $A C$ lines. Since there is not pre-emphasis included in the transmitter standard 75 micro second pre-emphasis should be included at some point in the audio equipment.

A coaxial jack is providea beside the audio input jack for connecting the monitor to the sampling loop in the power amplifier cabinet.

SECTION III

ASSEMBLY AND INSTALLATION

A. After the equipment has been unpacked remove all panels to permit easy access to the interior. A considerable amount of packing material shipping straps and braces will be found within the equipment, notably in the high voltage supply relay panel, modulator power supply, and power amplifier compartment. This material should all be removed and the supported parts carefully examined for any damage which may have occured while the equipment was in transit.
B. After the equipment has been located in its final position the power lines may be connected. Provision has been made in the cabinet design to permit cable entrance either through exposed condüt or concealed floor trench type wiring. A "TEP" shaped duct is built into the base of the transmitter which allows conduit entrance via either side near the front or through the rear center. The location of these knockouts is indicated on the installation drawing T-68. In addition an $8^{\prime \prime} \times 2^{\prime \prime}$ opening covered with a removable plate is provided for entrance of cables via a floor trench. If used, this palto should be removed and holes cut to permit passage of the cables. Unless the plate is reinstalled, an air leak will result, thus destroying the effectiveness of the intake air filter.

Primary power connections are made to terminals "A" and "B". The auxiliary lighting circuit connections are connected to terminals 53 and 54.
C. The output transmission line connections may now be made up.
D. Connect the audio input line and the monitor by means of the plugs which are provided in their respected jacks.
E. Install plug in resistors which are located as noted below:

SYMBOI NO.
STOCK NO.
RESISTANCE
LOCATION

R-800	R-5104 or R-5273	200,000 ohms	Resistor panel left side, bottom
R-801	R-5105	5 meghom	row, center.
R-803	R-5097 or R-5269	500 ohms	Resistor panal bottom row front
R-805	P-5109 or R-5271	250 ohms	Resistor panel, middle row. front.
R-806	Same as $\mathrm{F}-805$		Resistor panel, middle row.
$\mathrm{R}-807$ $\mathrm{R}-808$	R-5321 Same as	500 ohms	Bottom of grid circuit.
R-809	Same as F-805		Resistor pancl, middle row. Resistor panel, middle row.
R-810	R-5321	500 ohms	Below PA tube deck, left.
R-811	P-5269	500 ohms	Resistor board, lower right side.
R-812 $\mathrm{R}-818$	Same as R-811		Resistor board, lower rieht side.
R-818	R-5336	1250 ohms	Resistor panel, left side, top row.
R-8i9	R-5337	2000 ohms	rear.
R-820	R-5321	500 ohms	front. ${ }_{\text {Below }}$ PA tube deck, right.

F. Install all tubes. Pilot lights and glass fuses are shipped in their respective sockets.
G. There are five lumiline lamps to be installed. Two are used to illuminate the meter panel and the sockets for these will be found directly below the meters. Two are used inside the power amplifier compartment and operate when the compartment door is opened. One is located inside the plate compartment on the top front panel. The other is located under the PA tube deck just inside the front flange. The fifth light is located on the rear of the same cornerpost which supports the audio input jack.

THEORY OF OPERATION

A. PONER CONTROL CIROUIT

1. General

The power controls are designed to provide either complete manual or semiautomatic control with facilities provided for remote control of the application of power to the various stages, proper protection of equipment in the case of overloads, and reasonable time delays between the application of filament and plate voltages. All cabinet doors with the exception of those over the modulator compartment and the main front doors, are interlocked for the protection of personnel.

2. Primary Power Source

The main operating power is completely supplied by a $208 / 230$ volt (plus or minus 5\%) 60 cycles, single phase source. All filament transformer primary voltages are controlled by the variable auto transformer YR- 800 which is located on the right hand control panel, and should be adjusted to produce a reading of 5.0 volts on the front panel "FILAMENT VOLTAGE".

3. Control Circuits

The schematic diagram of the control circuits is shown on drawing SSm 538 . A functional across the line diegram is shown on drawing $B-629$ which will be useful in understanding the sequence of control operation.

The STANDBY switch 5808 should always be on, except for meintenance work on the standby circuit. Even so, the input side of S 308 and the main circuit breaker, K800, will be energized, hence it is advisable to open the main safety switch which powers the entire transmitter when maintenance work is required. When 5808 is closed, transformer T703 is energized through fuse F806 and protective resistor R-715. The secondary of $T 703$ operates the crystal heater when the transmitter is off the air. The standby fuses ${ }^{3} 807$ and $F 808$ provide protection for the standby and blower shut down circuits.

With all of the switches except the STANDBY SWITCH 8808 open, the first switch to be closed is the PRIMERY POWER circuit breaker $K 800$. The coil of the blower relay K805A is energized through the stand fuses $F 807$ and $F 808$ closing contacts $K 806 B, K 8060$, and K806D. The blower time delay relay $K 807$ is also energized through the normally closed contact K801C of the time delay reley K801. However relay $K 807$ will not operate at this time since its normal time delay is 2 minutes, and contact $k 801 \mathrm{C}$ will open 60 seconds after switch S 800 is closed. Contacts K 8060 and $K 805 \mathrm{D}$ apoly power to the blower B 800 through the thermal eliment K 805 E , and also to the blower pilot light, 1803 . The meter lights 1805 and 1806 should come on when $K 800$ is closed.

When the FILAMENT switch 5800 is closed and the blower 8800 has reached its oroper speed, the air switch $\$ 807$ will be closed thus energizing the filament variable auto trans former $Y 8800$ which in turn controls the voltage on $T 700$ through $F 801$ which supplies 6.5 volts $A C$ for the modulator $A C$ filaments; $T P 01$ through $F 802$ which supplies 6.6 volts $D C$ for the modulator $D C$ filaments; $K 700$ which switches the crystal heater from 6.0 volts AC standby to 6.6 volts $D C$ operate; $T 800$ through $F 803$ which controls the screen the bias supply filaments; T80l supplying the power amplifier filaments at 5 volts which is read on the FILAMEN VOLTAGE meter; T804, T805 and T806 which sunuly the high voltane rectifier filaments; K801 the rectifier tube time delay (60 seconds) which withholds application of high voltage until the rectifier tube cathodes are not and finally 1800 , the filament pilot light.
Section IV - I

60 seconds after the closing of the FILAMENT switch 5800 , the time delay relay K801 will operate, closine contact K801B and opening contact K801C. If all door interlocks are closed and the MODULATOR HIGH VOLTAGE switch is closed, then the coil of re lay K802A will be enereized closing contacts K802B and K802C. K802B, when closed, applies power to the modulator high voltage transformer $T 702$ and the modulator high voltage pilot light I801, through fuse F 804 . K8020 when closed energizes the high voltage recycling time delay (5 seconds) through the overload relay contact K8053, and the bias high voltage transformer 7802 through fuse $\$ 805$.

After 5 seconds from the time the MODULATOR HIGH VOLTAGE switch 5801 was closed time delay relay K803 will operate, closing its contact, K803B. Then if the HIGH VOLIAGE switch 5805 is closed, the PA high voltage relay $K 804$ will be energized, closing contacts K804B and K8040 through which power will be applied to the primary of the high voltage transformer $T 803$ through the tap changing switch S818, and to the high voltage pilot light I802. The closing of the power amplifier high voltage switch completes the cycle of manual operation and the equipment is ready for transmission provided that the couipment has been previously adjusted for proper voltages and the tuning controls were properly set. The switching controls are designed so as to control the cycle of operation at any stage desired. If any of the control switches $\mathrm{S}-800$, $\mathrm{S}-801$ or $\mathrm{S}-805$ are opened, the cycle of operation will automatically continue to the stage controlled by the particular switch that is opened and then stop. Further continuation of the operating cycle requires the closing of the switch or switches thet follow.

The manual "OFF" operation is performed in the reverse sequence of the "ON" operatio the power amplifier HIGH VOLTAGE SNITCH S-805 is turned off which removes the power amplifier high voltage then the modulator high voltage switch $\mathrm{S}-801$ is turned off, followed by the turning off of the filament power switch $S-800$ and finally the primary power circuit breaker, X -800.

If for any reason, by manual "OPF" operation or by a heavy overload, the overload breaker K-800 is opened, only one of the parallel sources of supply for the blower relay coil $\mathrm{K}-806$ A is removed and contacts $\mathrm{Z}-806 \mathrm{C}$ and $\mathrm{K}-806 \mathrm{D}$ remain closed. The power supplied through these contacts will keep the blower B-800 operating. At the same time that the circuit breaker K-800 is oponed, power is removed from ralay coil K-801A, thus closine contacts K-801C. Contact K-801C energizes the blower time delay relay K-807, and after 2 minutes, the normally closed contact $K-807 B$ opens thus removing the second of the two parallel sources of power for relay $\mathrm{K}-806 \mathrm{~A}$. This relay opens contact $\mathrm{K}-806 \mathrm{~B}$ which turns off the blower B-800 and the blower pilot light I-803.

CAUTION

The standby crystal heater switch $\mathrm{S}-808$ should never be turned off until the blower B- 800 has stopped.

Assuming that $\mathrm{S}-808$ is "on" in the standby position, semi-automatic operation of the control circuit is obtained by turning on all switches ($\mathrm{S}-800, \mathrm{~S}-801, \mathrm{~S}-805$) except the main PRIMARY POWER circuit breaker K-800. Then when K-800 is closed, the relays function as previously described and after approximately 65 seconds, the equipment is ready for transmission. The "stop" operation is performed by simply opening circuit breaker K-800. Approximately 2 minutes after the "stop" operation, the blower $B-800$ will stop and the standby crystal heater power will be the only power on. Care must be exercised when working near switch $5-808$.

In the power amplifier H.V. supply, an automatic reset overload current relay K-805 protects this stage from overloading. Relays K-802, and K-803 and K-804 will function as previously described under normal conditions after relay $\mathbb{E}-805$ has beon opened and automatically closed.

No provision is made to limit the number of recycling periods in the event of serious overload or short circuit in the high voltage circuit. Therefore if recycling persists, the equipment should be turned off and the source of trouble determined. The PRIMARY POWER circuit breaker $K-800$, which is a manual reset overload breaker protects the entire unit and will open only under much heavier overloads than the other overload relay $\mathrm{k}-805$. Caution should be taken before closing K - 800 after an overload.

B. Bias and Screen Suvolies

1. The bias and screen grid power supplies are located on the upper hinged chassis on the right side of the cabinet; and are shown schematically on drawing SS-638.
2. Filament voltage is adjusted by the FILAMENT voltage control on the front panel.
3. Primary voltage to the bias high voltage transformer T-802 is applied between common lead $\frac{\pi}{T} 10$ and control lead $\# 22$ which is energized by closing the "MOD HV" switch. The bias output, after adequate filtering, is connected by lead $\frac{n}{\pi} 48$ to the four 250 ohm series connected bleeder resistors R-805, R-806, R-808 and R-809 wheih are located on the resistor board on the left side of the equipment. The output of the bias supply is approximately -200 volts resulting in 50 volt steps across each of the four bleeder resistors. Lead $\frac{2}{*} 29$ connects to this bleeder at the -50 volt point to provide bias for the $829 B$ tubes in the IPA chassis and lead $\# 30$ connects the -150 volt point to the grid current meter, which in turn connects to the grid leak resistor R-807.
4. The high voltage winding for the screen power supgly is contained in the main high voltage transformer, the terminals appearing in a row below the primary terminals. Leads 47 to 49 provide the plate excitation for the screen rectifier tube $V-804$, and since the screen high voltage winding is part of the plate transformer, screen voltage increases with plate voltage.
 bleeder resistor p_{-804} and the series screen resistors $R-818$ and $R-819$ by lead 作5. From this point it is connected via the screen current meter and switch to the screen gricis of the power tubes.

C. High Voltase Sunoly

1. The high voltage anode supply for the power amplifier is obtained from the high voltage transformer $\mathrm{T}-803$ and the four type 872 A rectifier tubes which are mounted on the phenolic shelf in the base of the cabinct. Plate voltage is controlled by the PLATS VOITAGE switch S-81o which is located on the right control panel.
2. Filament voltage for the high voltage rectifier tubes is adjusted by the variable transformer YR-800. Indication is provided by the filament volt meter $\mathrm{M}-800$ which is mounted on the meter panel and should be adjusted to read 5.0 voltso.
3. The rectifier circuit is a conventional single phase full wave bridge. Filtering is accomplished ky the use of a double section filter consisting of L-800, Im801, $\mathrm{C}-800$, and $\mathrm{C}-801$. In adaition an auxiliary filter consisting of C-821 and R-811 and R-812 is connected in series between the high voltage bus and the negative return of the power supply to damp out any parasitic oscillations which might be generated by the input choke.
4. The high voltage lead is connected to both the main bleeder resistor P-800 and the high voltage meter multiplier resistor $\mathrm{R}-801$ and the plate circult of the pover amplifier. The low voltage end of the multiplier resistor is grounded through a parallel circuit consisting of the 10,000 ohm safety resistor R-802 and the hish voltage meter : $\mathrm{A}-803$. The function of R-802 is to

$$
\text { Section IV - } 4
$$

provide an auxiliary path to ground for the multiplier current in the event that the high voltage meter movement or any of its associated wiring should become open circuited, the resistance being high enough not to impair the meter accuracy, but still low enough to handle bleeder currents.
5. The negative return lead of the power supply is connected to one side of the filter capacitors $\mathrm{C}-800$ and $\mathrm{C}-801$, the low voltage end of the auxiliary filter, the safety resistor R-803 and by lead 446 to the coil of the plate overload relay $\mathrm{K}-805$ and then by lead ${ }^{4} 13$ through the plate current meter $\mathrm{M}-802$ to ground. The function of the 500 ohm safety resistor $\mathrm{R}-803$ is to maintain a secure ground an the return of the power supply in the event that any of the inter-connecting wires components in the normal return circuit might become open circuited.

D. Modulator

1. The modulator is diagramed in block fashion by figure "ly and schematically by drawing SS-638. It consists of the following equipment:

CAT.

a. Modulator power supply	592 A
b. Balanced Nodulator	587 A
c. Audio Panel	586 A
d. Multiplier and Single Ended Converter	589
e. Multiplier and Belanced Converter	588
f. Semi Final Multiplier	590
g. Intermediate Power Multiplier	590

2. The modulator power supply furnishes filament and plate voltages for the modulator chassis. On the modulator power supply terminal board; terminal th 3 supplies the crystal heater with 6.0 volts AC during standby, and 6.6 volts. DC while operating 44 is the DC filaments for the modulator, 88 is the filam ment supply, 范 9 the regulated 250 volt plate supply, and \#ll the unregulated 450 volt plate supply.
3. The Balanced Modulator Cet. \#587A contains a source of low radio frequency energy $Y-200$ and $V-200$, which is differentially phase modulated by $V-202$ and V-203 after amplification by the buffer amplifier V-201. V-204 and V-205 are triplers which erive the Multiolier and Single Ended Converter, Cat. 4589 , and the Multiplier and Balanced Converter, Cat. \#588. The latter two panels are parallel frequency multiplying channels with a total multiplication of 81 times with their frequency deviations separated by 180° and terminated in a converter stage. If as an example a 200 KC crystal is used in the balanced modulator panel the input voltages to the two converters from the channels will be $16,200 \mathrm{KC}$ 。
4. The audio panel contains in adiition to the auaio stages, the control fre: quency oscillator, the frequency of which is $1 / 48$ that of the transmitter output frequency. To continue the example of paragraph 3 , assume a control crystal frequency of $2,000 \mathrm{KC}$. This voltage is introduced. into the balanced converter and heterodyned with the multiplied input fron the first cryo. stal at $16,200 \mathrm{KC}$. The plate circuit of the belanced converter is tuned to
the difference frequency or $14,200 \mathrm{KC}$. This voltage is combined in the single ended converter with the $16,200 \mathrm{KC}$ from the second channel and afain the difference frequency, $2,000 \mathrm{KC}$, appears in the plate circuit. This voltage is used to drive the semi-final multiplier panel and has an operating fre quency of plus/minus 1,560 cycles.
5. The purpose of this dual conversion is multi-fold;
a. A large amount of multiplication is provided so that the initial Phase shift in the modulator tubes may be kept as low as possible while at the same time maintaining a lov multiplication of the control frequency oscillator thereby producing a stable center frequency. Multiplication ratios are 7776 over all but only 48 times from the control frequency crystal.
b. By the use of the dual conversion dual channel system the output fro quency of the transmitter becomes independent of the low frequency oscillator, its stability being dependent only upon the stability of the control frequency oscillator.
c. Noise products which are generated in the low frequency oscillator and buffer amplifier stages are cancelled out in the conversion process thereby producing noise levels of minus 70 db . below 100% modulation.
d. Since the modulation is applied differentially to each channel the conversion process results in an aditional double in the deviation frequency without the use of an additional multiplier.
6. The Semi-final multiplying panel provides a multiplication of 8 times in two amplifier and three doubler stages. Its output, and again using the example above, is 16 megacycles. The final maltiplier panel provides a multiplication of 6 times in a doubler stage, a tripler stage, and an amplifier stage. The output from this panel for the conditions of the example will be 96 mes acycles, which is coupled by a balanced transmission line consisting of RG-8U cable to the grids of the power amplifier.

E. Power Amplifier

The power amplifier stage of the model 518 transmitter utilizes 2 Eimac type 4000 A internal anode tetrodes in conjunction with linear circuit elements comprised of short sections of 2 vire transmission lines.

The belanced coaxial coupling line from the final multiplier panel is terminam ted in a hairpin which in turn is coupled to the grid circuit.

Neutralization is accomplished by resonating the screen grid lead of each tube to eround with a variable capacitor. Screen voltage is applied to each tube through a 500 ohm wire wound resistor which acts as a heavily damped choke. Individual screen currents and total screen current are metered by means of the SCRAEN CURPMN meter and selector switch which are located at the top of the right control panel.

Output coupling from the anode circuit is accomplished by means of a hairpin mounted on the rear wall of the pover amplifier compartment. The position of this hairpin with respect to the plate lines is variable from the right hand control panel for coupling control. Two air dielectric series capacitors are provided just behind the hairpin for tunins purposes.

Connection of the single $7 / 8^{\prime \prime}$ output transmission line is accomplished just inside the top of the transmitter proper.

F. Power Outrut Indicator

The power output indicator is a voltage operated device which provides a relam tive indication of transmission line voltage at the point of insertion into the tranamission line. The pichup unit is brazed to the short section of transmission line inside the power amplifier cabinet. It consists of a small adjustable probe, a crystal detector, and RF filters. The indicator is a 1 milliampere meter mounted on the meter panel, accessible behind the upper right panel of the power amplifier cabinet for setting a convenient mid-scale meter reading for full power output.

BLOCK DIAGRAM OF THE DUAL CHANNEL MODULATOR

A- AMPLIFIER
O= DOUBLER
T= TRIPLER
MIX. MIXER

FIG. 1
Baction IV .. ε

SECTION VI

MODULATOR AND POWER AMPLIFIER ADJUSTMENT PROCEDURE

A. MODULATIOR LINE UP PROCEDURE

The turing of the modulator is extremely simple, and ordinarily should require only a $f \in w$ minutes. In each of the panels the signal direction is from right to left, and one must proceed this way in alignment. Assuming that complete alignment is needed, the following procedure should be followed:

1. Place the voltmeter probe in J-204 and adjust the trimmer on $2-200$ until a voltage is obtained. This serves to indicate that the low frequency crystal oscillator is operative.
2. With the probe in J-303 $\mathcal{E} 0$ through the Balanced Modulator Chassis, Cat. \#587A from right to left adjusting 2-201, 2-203 and Z-204 for maximum drive as read at J-303. Z-202 is not adjusted at this time. See paragraph 26 for detailed procedure. Then, when $2-300$ is peaked the drive at J-303 should be 20 to 30 volts.
3. With the probe in J-402, 2-205 and Z-400 are peaked for meximum drive. the voltage at J-402 should be 20 to 30 volts.
4. Return the probe to J-204 and tune the low frequency oscillator tank, 2-200, until the voltage indicated is zero. It is important that V-201 is not driven into the grid current region, which is indicated by a voltage reading at $J-204$.
5. The multiplier and Balanced Converter, Cat. $H^{4} 588$, may now be tuned by inserting the probe in J-304 and peaking transformer $2-301$ for a 20 to 30 volt indication.
6. Insert the probe in J-305 and peak $Z-302$ for a 60 to 70 volt indication.
7. With the probe in J-306, peak 2-303 for 35 to 45 volts of drive.
8. Insert the probe in $J-307$ and peak $Z-304$ for a reading of 5.0 to 8.0 volts.
9. Insert the probe in $J-308$ and tune $2-100$ in the control crystal oscillator circuit and $2-305$ to maximum. After $2-305$ is peaked lower the drive with 2-100 until 8 to 10° volts at $J-308$ is obtained.
10. For line up of the Multiplier and Single Ended Converter Cat. \#589, insert the probe in J-403 and peak transformer $2-401$ for a 20 to 30 volt indica tion.
11. Insert the probe in $J-404$ and peak $2-402$ for a 60 to 70 volt indication.
12. With the probe in J-405, peak 2-403 for 35 to 45 volts of drive.
13. Insert the probe in $J-406$ and peak $2-404$ for a 6 to 10 volt reading.
14. Insert the probe in $J-408$ and peak $Z-306$ and $z-406$ for a 0.5 to 4 volt indication.

MODULATOR AND POMER AMPLIFIER ADJUSTMENT PROCEDURE

15. The Semi Final Multiplier, Cat. \#590 is now tuned by inserting the probe in J-501 and peaking z-405 and z-500 for 15 to 25 volts of drive.
16. Insert the probe in J-502, and peak Z-501 for 40 to 50 volts. y^{2}
17. With the probe in J-503, 2-502 is peaked for 45 to 55 volts. A 5,5
18. 2-503 is next peaked for 60 to 70 volts as read at $J-504, \because \therefore$, \because
19. Insert the probe in J-505 and peak 2-504 for a 50 to 60 volt indication. 6
20. The Final Multiplier Cat. \#591A is tuned by inserting the probe in J-601 and peaking $2-505$ and $z-600$ for 40 to 50 volts. Approximate resonance of 2-505 may be noted by a slight increase of approximately 1 volt at J-505 as $2-505$ becomes resonant.
21. With the probe in $J-502$ the doubler plate and tripler grid are tuned for 120 to 150 volts of orive.
22. Tune the tripler plate for minimum reading on the plate meter, M-600, (Plate resonance dip.)
23. Insert the probe in $J-603$ and tune the amplifier grid for maximum drive repeak both the tripler plate and amplifier grid controls. The amplifier grid drive should be between 130 and 180 volts, and the tripler plate current, as shown on the plate current meter, between 60 to 100 mills.
24. Tune the amplifier plate for minimum reaaing on the plate meter M-601, (Plate resonance dip.)
25. Tune Power Amplifier grid circuit and the intermediate Amplifier output tuning for maximurn indication on the Power Amplifier grid meter. Check Amplifier plate and output tuning and grid tuning for maximum drive. The grid meter should read 30 to 35 ma . This completes the Modulator tuning adjustments. A simplified chart of the above adjustments is included on the next page.
26. $Z-202$ and $z-407$ cannot be adjusted by simply peaking a reading on a voltmeter. In the absence of proper equipnent necessary for their adjustments,
*. they must be set at the factory marked position, winich is not in the least critical. The equipment required for these adjustments is as follows:
a. Distortionless or very low distortion receiver.
b. Distortion measuring equipnent.
c. A neans of determining frequency deviation. The REL Cat. $\frac{7}{4} 600$ Monitor may be used for this or one of the more fundamental methods may be used.
d. A good, high gain, oscilloscope such as the Dumont 208B.
e. A source of sinusoialal 50 cps .

MODULATOR AND FOWER ANPITFIER ADUUSTMENT PROCEDUFE

Z-202 is merely adjusted for minimum distortion, with a modulation frequency of 50 cycles per second and a deviation of plus/minus 75 kc . This adjustment is very broad and not critical as to distortion.

Z 4407 is adjusted by modulating 100% (plus/minus 75 Kc . deviation) at 50 cycles and observing the output of the low distortion receiver on the oscilloscope. Make the image very large and observe particularly the peaks. Then adjust $2-407$ for the purest sine' wave peak. If no high frequency hash is seen on the peaks of the 50 cycles waveform, do not disturb the adjustment of 2-407. Again this adjustment is non-critical making approximately 0.1 db difference in distortion measurements at 50 cycles.

$\begin{aligned} & \text { PLACE PROBE } \\ & \text { IN } \\ & \text { JACK } \\ & \hline \end{aligned}$	ADJUST	APPROXIMATA RANGII OF CORRECT INDICATION	$\begin{gathered} \text { ORDER OF } \\ \text { TUNING } \\ \text { OPERATION } \end{gathered}$
J-204	z-200	(All voltages negative with respect to ground) Any voltage	1
J-303	$\begin{aligned} & z-201, \\ & z-204, \\ & z-300 \end{aligned}$	$20-307$	2
J-402	2-205, 20400%	$20-30 \mathrm{~V}$	3
J-204	2-200	Nust be zero.	4
J-304	2-301	20-30V	5
J-305	2-302:	60-70V	6
J-306	2-303 ${ }^{\prime}$	$35-45 \mathrm{~V}$	7
J-307	2-304 ${ }^{\prime \prime}$	5-8V	8
J-308	2-100, 2-305	After tuning z-305 to maxirum, lower voltage with $2-100$ to $8-10$ volts.	9
J. 403	2-401	$20-30 \mathrm{~V}$	10
J-404	20-402"	$60-70 \mathrm{~V}$	11
J. 405	$2-403$	$35-45 V$	12
J-406	2-404	6V-10V	13
J-408	2-306, 2 -406	0.5V- 4V	14
J-501	2-405, 2-500"	15V-25V \quad -	15
J-502	2-501	40V-50V	16
J-503	2-502	45-55V	17
S-504	2-503	$60-707$	18
J-505	2-504	$50-60 \mathrm{~V}$	19
J-601	2-505, 2-600	$40-50 \mathrm{~V}$	20
J-602	Doubler Plate \& Tripler Grid	120-150V	21

$\begin{gathered} \text { PLACE PROBM } \\ \text { IN } \\ \text { JACK } \\ \hline \end{gathered}$	ADJUST	APPROXIMATE RANGE OF CORREOT INDICATION	$\begin{gathered} \text { ORDER OF } \\ \text { TUNING } \\ \text { OPERATION } \end{gathered}$
Observe Tripler Plate Cur. Meter	Tripler Plate	Tune for dip $66-100 \mathrm{Ma} \text { 。 }$	22
J-603	Amp. Grid \& Tripler Plate	130 180V Drive	23
Observe Intermediate Amplifier Plate Current meter.	Intermediate Amplifier Plate	$\begin{aligned} & \text { Tune for dip } \\ & 110-150 \mathrm{Ma} \end{aligned}$	24
Observe Power Amplifier Grid current meter.	Intermediate Ampo lifier Plate, Outo put tuning. PoA。 Grid tunine.	30 to 35 Ma Grid Drive on Power Amplifie r	25

B. POWER AMPLIFIER ADJUSTMENTS

1. Neutralizing

a. Neutralizing of the final amplifier is conventional and straight forward. Decouple the output coupling link as far as possible. Set the neutralizing capacitors at half capacity.
b. Turn on the driver and tune the power amplifier grid circuit. Tune the plate circuit while observing both grid and plate current meters. A slight dip in the low reading of the plate current meter will indicate resonance. If the grid current passes through a minimum at this point, peak it with the neutralizing canacitors. Recheck the plate tuning. It will be necessary to repeat this proceaure several times until no reaction or perhaps a slight peaking of the grid current occurs as the plate circuit is tuned through resonance.
c. Remove the plate cap from the right front high voltage rectifier tube, and set the high voltage selector switch to the low position. Turn on the high voltage.
d. Check the grid tuning, then tune the plate circuit. Perfect neutralizing occurs when, as the plate current passes through its dip, the grid current passes through its peak. If this condition is not apparent readjust the neutralizing capacitors slifhtly until it is.
e. Replace the cap on the bigh voltage rectifier tube and tune the plate circuit off resonance on each side. A condition may appear in which the plate current will swing to approximately 500 Ma . on the low frequency side of resonance but will not reach this value on the high frequency side before breaking over and starting into another dip. In this case tune the plate circuit in the high frequency direction stopping just before the plate current starts to dip again. At this point adjust the neutralizing capacitors slightly in the direction which will tend to raise the grid current. Recheck the coincidence oi plate current dip and Erid current peak and then detune the plate circuit on the high frequency side of resonance to see that the plate current rises to apmroximately the same value as that achieved on the low frequency side. It may be necessary to repeat this procedure several times before the plate current swing is roughly equal on both stides of resonance.
f. Hold jow the interlock of the door over the final multiplier panel and oven the switch which controls the 8293 screen voltege. Plate and grid current on the final amplifier should disappear completely. If a slight residual current remains, adjust the neutralizing capacitors until it disappears, then turn on the drive again and recheck the tracking of grid and plate currents and the off resonance swing of the plate current.

A. CONTROL CIRCUIT ADJUSTMENTS

(All necessary control circuit adjustments have been made at the factory, however for future checks, they are listed below。)

1. FILAMENT TIME DEILAY K801

This relay should be adjusted for approximately 60 seconds. Aojustment is made by the small screw at the top of the relay, and direction of rotation is indicated.

2. HIGH VOITAGE TIME DEIAY K803

This relay should be adjusted for approximately 3 to 5 seconds. Adjustment procedure is the same as for filament time delay, K80l, above.

3. BIONER TIME DELAY RELAY K807

This relay should be adjusted for 2 to $2 \frac{1}{2}$ minutes. Adjustment procedure is the same as for the filament time delay K8O1 above.
4. OVERIOAD PELAY K805

This relay should be adjusted to trip at 600 milliamperes. Adjustment instructions are given on the relay inself.
B. ADJUSTMENTS FOR TURNING ON TAE TRANSMITTER

NOTE: Adjustments and checks given below have all been made at the factory, but should be re-checked for the station line voltage and to disclose any damage to adjustments during shipning.

1. 110V CIRCUITS
(a) With 110 volts, single phase, 60 cycle AC connected to terminals 53 and 54 , the convenience outlet in the rear base of the transmitter should be checked for power avail ability.
(b) After the lumiline lanps have been installed the power amplifier compartment should be illuminated when its door is opened. With the front lower pariel or the right low er panel removed the bottom deck should be illuminated.

2. APPIICATION OF PONER

NOTE8 All switches should be opened.
A. STANDEY CIRCUIT

1. Close the standby switch $\mathrm{S}-808$, and the crystal pilot light, I-804 shoula light.
2. The voltege at the crystal heater should be checked and if not 6.0 to 6.3 volts $A C$, R-7l5 behind the rear cover plate of the modulator power supply should be adjusted to give the proper voltage. This resistor is mounted near T-703 and is connected in series with terminal \#1 of T-703.
```
                                    Section V* =
```

PRELIMINARY ADJUSTMENTS \& OPERATION OF THE EQUIPMENT
3. $\mathrm{S}-808$ is normally closed to provide standby power for the crystal heater and blower shutdown circuits and should not be opened unless work is being performed on these circuits.

3. FILAMENT CIRCUIT

a. Close the main circuit breaker K-800, the blower B-800 should start, the blower pilot light I-803 should light and the meter lights I-805 and I-806 should light.
b. The filament switch S-800 may now be closed. The filament voltage control should be raised until the filament volt meter reads 5.0 volts. As the voltage is raised, relay $\mathrm{K}-700$ will close and may chatter a bit, but when the meter reads 5.0 volts the relay will have sealed closed.
c. All tube filaments will now be energized, and the crystal heater will be powered by DC after relay K-700 closes. A check should be made of the DC filament voltage at terminal \#4 on the Modulator Chassis. R-712 should be adjusted for 6.6 V DC at terminal ${ }^{3} 4$, to ground, while the crystal is heating up. Terminal \#8 on the multiplier and balanced converter chassis should be checked to see that 6.6 volts $A C$ exist between it and ground
d. The compensatine resistor, R-7ll, should be checked for proper setting to absorb the not er normally taken by the crystal heater when the heater thermostat opens. The voltage while the crystal is heating up will be $6.6 \mathrm{~V} D C$ as explained in (C) above. When the heater has reached its temperature and the thermostat opens, relay $\mathrm{K}-701 \mathrm{~A}$ will open and contact K-701B, will close putting R-7ll in place of the crystal heater. Therefore, wo keep the 6.6 V DC constant, R-7ll should be adjusted so that when the crystal is removed from its socket the DC voltage remains at 6.6 volts.
e. The Filament Pilot light will also be lighted.
4. MODULATOR HIGY VOITAGE
a. If all door interlocks are closed, and relay K-801 has closed its contact K-801A after 60 seconds time delay, then closing the Modulator Hich Voltage switch S-801 will close relay K-802.
b. Modulator high voltage will be on, and the 250 volt regulated supply may be checked at terminal \#9 on the Modulator Pover Supply chassis. If other than 250 volts, R-709 should be adjusted to give the prover value. The unregulated suoply should be checked at terminal ${ }^{\prime \prime} 11$ for approximately 450 volts.
c. The bias high voltage will also be on and $R-808$ on the resistor board should indicate approximately - 200 volts to ground.
d. The relay $\mathrm{K}-803$ will be energized and start its 5 second time delay cycle. The Modulator High Voltage Pilot light will be on.
e. Check the operation of the door interlocks by opening each aoor and panel with the excention of those over the modulator compartment and see that the Modulator High Voltage pilot light and modulator high voltage go off.

PRELIMINARY ADJUSTMENTS \& OPERATION OF THE EQUIPMENT

1. Tune the Power Ampifier erid circuit. See Section VI for detailed modulator and power amplifier adjustment data.

5. P.A. HIGH VOITAGE

a. Close the P.A. High Voltage switch S-805. If 5 seconds have elapsed since the closing of the modulator high voltage switch $\mathrm{S}-801$, the high voltage recycling time delay K-803 will have closed, thus energizing the coil of the high voltage relay $K-804$ which closes contacts $K-804 \mathrm{~B}$ and $\mathrm{K}-804 \mathrm{C}$, and applying power to the primary of the high voltage transformer through the tap changing switch S-816. Plate voltage should be indicated by the Plate Voltage Meter M-803, and screen voltage (about $350-400$ volts) should be present at lead \#15 on the resistor panel. At the screens of the tubes, under normal operating conditions, this voitm age will be approximately 190 volts due to the action of the series resistors R-818 and R-819. The P.A. HV pilot light I-802 should light.
b. Tune the amplifier plate circuit to resonance. See Section VI for detailed power amplifier tuning procedure.
C. TURNING OFF THE TRANSMITTEB

1. The transmitter may be turned off by opening each switch, except the Standby switch S-808, and the Primary Power circuit breaker. The enuipment will shut down in sem quence, the crystal heater will be in the standby apae of operation, and the blow er will stop after 2 to 2.5 minutes, depenaing upon the adjustment of time delay K-807.
2. The equipment may also be shut down by merely opening the Primary Power circuit breaker, leaving all other switches on with the results noted above.

D. TURNING ON THE TRANSMITTER - SEMI-AUTOMATIC OPERATION

To turn on the equipment semi-autometically, close all switches including the Primary Power circuit breaker and select the high voltage desired by means of the high voltage tap changing switch S-816. The equipment will then cycle up autonatically, with the apolication of all supply voltages controlled by time delay action.

2. ADJUSTMFNT OF OUTPUT TUNING CAPACITORS

CAUTION

FOR THE PROTECTION OF BOTH TRANSMISSION IINES AND THE TRANSMITTER - THE TRANSMISSION LINE SYSTEM MUST BE WELI TERMINATHD BEFORE ATTEMPTING TO APPLY POHER.
a. A poorly terminated transmission line system will reflect reactance into the plate circuit of the transmitter, the severity of the reflection dependig upon the magnitude of the transmission line standing wave ratio - Under poor concitions of termination, ie. standing wave ratios in excess of 1.5 to 1 , it is very cifficult to make the correct initial adjustments of the power amplifier output circuits.
b. Adjust the output coupling control so that the output coupline link is swung in for about 75 多 of its total available adjustment. With the high voltage switch in the low position turn on the plate voltage. Resonate the plate circuit.
c. Rotate the coupline control so that the link is backed avay from the plate circuit. Retune the olate circuit, noting the direction of rom tation of the plate tuning control. If the plate circuit requires lenthening, more capacity is required in the series output capacitors. The balance between these capacitors should be maintained closely. Conversly, if the plate lines required shortening less series catacity is required.
d. After noting the sense of the capacity change required, adjust the series capacitors by aporozimately one turn in the oroper direction. Eneaze the coupling halroin again and repeat the above procecure until plate resono ance is maintained regardess of the position of coupling hairpin. It should be notec theit as the resonance noint of the series capecitors is approached their effect becomes much more pronounced and even a quarter turn may be sufiicient to fo through the true resonance point.
3. SCREEN CUREENT DETANCR - - ANODE COLOR
a. Witi the transmitter completely tuned, the output coupling link should be adjusteri for approximately 250 Ma . plate current. Raise the plate voltage to the medium position by means of the selector switch. Check the screen currents on each tube as well as the anode color. If an uno balance is present as indicated by either the screen current or the anoce color, a slight readjustment of the output tuning capacitors, that is, slightly less capacity on one sicie with a corresponding increase on the other to maintain the resonence of the output circuit, will generally rectify any tendency to unbalance.

4. LAPMING UP THE EDUIPMFNT

a. When startine the transmitter, it is advisable to operate at the low voltage level for apororimately 5 minutes before reising the plate voltace to normal opedatine level. During the first few minutes the erid and plate circuits man orintly out of resonance until they reach operatinp trim perature. It should be unne:essery to retune any of the circuits curine
this period of warm up and under no condition should an attempt. be made to touch up neutralizing unless the transmitter is at its operating temperature.
5. OUTFUT VOLTMETER COUPIING
a. The pickup probe for the RF output meter is attached to the output coaxial line inside the transmitter cabinat. If insufficient indication is obtained even with the control potentiometer $R-821$ at maximum, unscrew the large section of the probe housing and with a 7/16" socket wrench re move the miniature spark plug from the line. A brass probe is attached to the center conductor of the plug and may be extended slightly or enlarged if necessary.

TYPICAL METER READINGS

POWFR AMPLIFIER

Filament Voltage	Grid Current	$\begin{gathered} \text { Grid } \\ \text { Voltage - Term. } \# 44 \end{gathered}$		Screen Currents		
5.0	30-35ma			$\begin{aligned} & 41 \\ & 20 \mathrm{ma} \end{aligned}$	$\begin{aligned} & \$ 2 \\ & 20 \mathrm{ma} \end{aligned}$	Total 40 ma
Screen Voltage	Plate Current	Plate Voltage	Power Output	$\frac{\text { Efficiency }}{70 \%}$		
185	365 ma	3900	1000 watts			

NOTE: Readinge should be taken with a 20,000 Ohms/volt multitester, Voltohmyst, or similar type of instrument. Readings indicated below taken with a yoltohmyst.

> Audio Panel Cat. 586A

Jack	Reading	Comments
J-100 J-101	$\$ 2.2 V:$ 	Average Average

Balanced Modulator Cat. 587 A

Jack	Reading	Comments
J-204	0.0	Should al- ways read zero.

Multiolier and Balanced Converter Cat. 588

Jack	Reading	Comments
$J-303$	$-25 V$	Average
$J-304$	$-25 V$	Average
$J-305$	$-65 V$	Average
$J-306$	$-30 V$	Average
$J-307$	-6.6 V	Average
$J-308$	-8 to -10	Critical

SECTION VI

TYPICAL METER READINGS

Multiolier and Single Ended Converter Cat. 582

JACK	PWADING	COMMENTS
		\%
J_402	-25V	Average
J. 403	-25V	Average
J-404	-65V	Average
J-405	-40V	Average
J-406	-8.0	Average
J-408	-2.2	Average
	Semi-Final Multiplier Cat. 590	,
JACK	READING	COMMENTS
J-501	-20V	Average
J-502 ${ }^{-}$	-45V	Average
J-503	-50V	Average
J-504	-65V	Average
J-505	-55V	Average

Intermediate Power Multinlier Cat. 695

JACK	RPADING	Comments
J-601	-45V	Average
J-602	-135V	Average
M-600	80 Ma .	V-601 Plate
		Current as
		read on trip-
		ler plate met-
J-603	-155V	Average
M-601	130Ma.	V-601 plate
		current as
		read on ampli-
		fier plate met-
		er.

TYPICAL METER READINGS

Modulator Power Supply

TERMINAL NOMBER	READING	COMMENT

$\# 3$	6.6 V DC	In operating condition
$\# 8$	6.3 V AC	In standby condition
$\# 4$	6.6 V AC	AC Fil voltage
$\# 9$	+6.6 V DC	DC Fil. voltage
$\# 11$	4.250 volts	Regulated high voltage

PARTS LIST FOR CAT. \#586A
AUDIO PANEL FOR F.M. MODULATOR

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
0-100	c-5178-s1	Capacitor .- fixed, mica, . $00015 \mathrm{mfd}, 500 \mathrm{VDCW}, 10 \%$
C-101	C-5122-14	Capacitor - fixed, dry electrolytic, 25 mfd .50 VDCW
C-102	C-5089-H2	Capacitor, variable, air, 35 mmfd .
C-103	Cos5107014	Capacitor - fixed, paper, oil filled, 1 mfd. 600 VDCW
a-104		Capactor - Same as C-l03
C-105	$0-5124-14$	Capacitor . fixed, paper, 011 filled, 0.05 mfd .400 VDCW
C-106		Capacitor - Same as C-105
C-107		Capacitor - Same as C-103
0.108	C-5016.0.M6	Capacitor - fixed, molded paper, . 01 mfd .300 VDCW 20\%
C-109	C-5125-14	```Capacitor - fixed, paper, oll filled, 0.5 mfd. 400 VDCW```
C-110		Capacitor - Same as C-109
c-211		Capacitor - Same as C-109
C-112	c-5047-s1	Capacitor - fixed, mica, . $001 \mathrm{mfd} .500 \mathrm{VDCN}, 20 \%$
0-213		Capacitor - Same as Coll2
C-114		Capacitor - Same as C-112
0-115		Capacitor - Same as C-112
c-116		Capacitor - Same ens C-108
$0-117$	c-5165-55	Capacitor - fixea, ceramic, $3 \mathrm{mmfa}, 500 \mathrm{VDCW}, 5 \%$
C-118		Cspacitor - See 2-100
C-119		Capacitor - See 2-100
C-120		Capacitor -- Same as C-112
c-121		Capacitor - Same as C-112

PARTS LIST FOR CAT. \# 58 ÓA
AUDIO PANEL FOR F.M. MODULATOR

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { REL STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	
C-122	C-5017-S7	Capacitor - fixed, paper, 1 mfd .400 VDCW, 20%	
C-123		Capacitor - Same as C-108	
C-124		Capacitor - Same as C-112	
C-125		Capacitor - Same as C-112	
C-126		Capacitor - Same as C-112	
C-127		Capacitor - Same as C-112	
C-128	C-5000-M5	Capacitor - 1200 mfd . ceramic, 300 VDCW, 20%	
C-129	-	Capacitor - Same as C-124	
E-100	E-5004hoJ2	Terminal Strip 4 terminals	
J-100	J-5015-I1	Jack - pin type, female contact	
J-101		Jack - Same as J-100	
J-102	J-50180a5	```Jack - twin contacts, chessis connector, female contects```	
J-103	J-5001-A5	Jack - femeie contact, chassis mounting type	
J-103A	J-5017-. S $^{\text {5 }}$	Jack Hood - for use with REL nart J-5001-A5	
J-104		Jack - Some as J-1.03	
J-104A		Jack Hood - Same as J-103A	
J-105		Jack - Same as J-103	
J-105A		Jack Hood - Same as J-103A	
1-100	I-5012-014	Choke, A. F_{0} - 50 henries O.T.	
I-101	I-5027-R7	Choke, RoF.os 7.5 microhenries	
I-102	L-5026-R7	Choke, $\mathrm{R}_{0} \mathrm{~F}_{0}$ - 12.5 microhenries	
I-103		Choke, Rowo - Same as Lr 101	
L-104	L-5028mm	Choke, RoF. - 2.5 millihenries	

$\begin{gathered} \hline \text { SYMBOL } \\ \text { NO. } \end{gathered}$		
L-105		Choke, R.F. - 40 microhenries
L-106		Same as I-105
P-101	R-5087-A11	Resistor, fixed, composition, 500 ohms, 1 watt, 10%
R-102	R-5231-A11	Resistor - fixed, composition, 1500 ohms, 1/2 watt, 10%
R-103		Resistor - Same as R-102
8-104	R-5181-Al1	Resistor - fixed, composition, $0.27 \mathrm{meg} \mathrm{ohm}$,1 watt, 10%
P-105	R-5187-A11	Resistor - fixed, composition, 470 ohms, 1 watt, 10%
R-106	$\begin{aligned} & \mathrm{R}-5084-\mathrm{I} 2 \\ & \text { or } \\ & \mathrm{R}-5186-\mathrm{All} \end{aligned}$	$\begin{aligned} & \text { Resistor - fixed, composition, } 50,000 \text { ohms, } 1 \text { watt, } 10 \% \\ & \text { Resistor - fixed, composition, } 47,000 \text { ohms, } 1 \text { watt, } 10 \% \end{aligned}$
R-107	R-5057-All	Resistor - fixed, composition, 1000 ohms, 2 watts, 10%
R-108	R-5200-All	Resistor - fixed, composition, 100,000 ohms. $1 / 2 \mathrm{watt}, 10$ \%
R-109		Resistor - not used
R-110		Resistor - Same as Rol04
R-111		Resistor - Same as R-104
R-112		Resistor - Same as Prol04
R-113	R-5112-A11	Resistor - fixed, composition, 100,000 ohms, 1 watt, 10%
R-114		Resistor - Same as Pmol0
R-115		Resistor - Seme as R-105
R-116	R-5182mAll	Resistor - fixed, composition, 390,000 ohms, 1 watt, 10%
R-117		Resistor - Same as R-104.
R-118	R-5191-A11	Resistor - fixed, composition, 39,000 ohms, 1 watt, 10%
R-119		Resistor - Same as R-104
R-120.		Resistor - Same as R-118
R-121	R-5198-A1J.	Resistor - fixed, composition, 10 ohms, 1 we.tt, 5%
R-122		Resistor - Same as R-121

PARTS IIST FOR CAT。
AUDIO PANEL FOR F.M. MODULATOR

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \mathrm{REL} \text { STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
T-100	T-5020-C14	Transformer, AF - primary impedance 500 ohms, secondary impedence 500 ohms, input level 6 milliwatts , frequency char acteristic flat from $30-15,000$ cycles, distortion less than. 1% RMS
V-100		Tube - Type 7N7 loctal
- -101		Tube - Same as V-100
V-102		Tube - Type 707 loctal
X-100	$\begin{aligned} & X-5007-I 1 \\ & \text { or } \\ & X-5047-A 5 \end{aligned}$	$\begin{aligned} & \text { Socket - loctal, ceramic } \\ & \text { Socket - loctal, mica filled bakelite } \end{aligned}$
X-101		Socket - Same as X-100
X-102		Socket - Same as X-100
X-103	x-5018-54	Socket - for crystal - ceramic, 7 prong large
Y-100	Y-5011-34	Crystal, quartz - Frequency dependent upon customers ros quired frequency
2-100	2-5028-55	Tuning assembly - tuning range $1833-2250 \mathrm{kc}$ - -
		Consists of:
		Primary Inductance - 120 microhenries, 3%
		Secondary Inductance - 40 microhenries, 5%
		C-118-Capacitor, variable, air 3.4-32 mmf.
		C-119 - Canacitor, fixed, ceramic, $10 \mathrm{mmf}, 500 \mathrm{VDCW}, 5 \%$

$\begin{gathered} \text { SYMBOL } \\ \text { NO, } \\ \hline \end{gathered}$	$\begin{aligned} & \text { BEL STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
C-200	C-5016-M6	Capacitor - fixed, molded paper, . 01 mfd .300 VDCH, 20%
C-201		Capacitor - Same as C-200
C-202		Capacitor - Same as C-200
C-203		Capacitor - See z-200
C-204		Capacitor - See Z-200
C-205		Capacitor - Same as C-200
C\&206		Not used.
0-207		Capacitor - Same as C-200
c-208		Capacitor - See 2-201.
C-209		Capacitor - See z-201
C-210		Capacitor - See 2-201
C-212		Capacitor - See 2-201
C-212	C-5082-85	Capacitor - fixed, ceramic, $200 \mathrm{mmfd} .500 \mathrm{VDCW}, 1 \%$
C-213		Capacitor - Same as C-212
C-214	C-5122-14	Capacitor - fixed, dry electrolytic, 25 mfa .50 vDCH
C-215		Capacitor - Same as C-200
C-216		Capacitor - Same as C-200
C-217		Capacitor - Same as C-200
C-218		Capacitor - See 2-202
C-219		Capacitor - Same as C-200
C-220		Capacitor - Part of 2-202 Assembly
C-221		Capacitor - Part of 2-203 Assembly
C-222		Capacitor - Port of 2-203 Assembly
C-223		Capacitor - Part of z-203 Assembly

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REL STOCX } \\ \mathrm{NO} . \\ \hline \end{gathered}$	DESCRIPITON
C-224		Capacitor - Same as 0-200
C-225		Capacitor - Same as C-200
C-226		Capacitor - See 2-205
C-227		Capacitor - See 2-205
C-228		Capacitor - Same as 0-200
C-229		Capacitor - Same as Co-200
a-230		Capacitor - See 2-204
C-231		Capacitor - See 2-204
C. 232		Capacitor - Not used
c-238	0-5047-S1	Capacitor - fixed, mica, . $001 \mathrm{mfd} ., 500 \mathrm{VDCH}, 20 \%$
c-239		Canacitor - Same as C-238
C-240		Capacitor - Same as C-238
c-241		Capacitor - Same as C-238
0-242		Capacitor - See z-200
C-243		Capacitor - Same as C-200
C-244		Capacitor - Part of 2-202 Assembly
C-245	C-5165-5	Capacitor - iixed, ceramic, $3 \mathrm{mmfd}, 500 \mathrm{VDCW}, 5 \%$
C-246	C-5000-145	Capacitor - fixed, ceramic, $1200 \mathrm{mmfd}, 300$ VDCW, 20%
0-247		Capacitor - Same as C-246
E-200	E-5012-J2	Terminal strip. 3 terminals
J-200	J-5001-A5	Jack - female contact - chassis mounting type
J-200A	- J-5017-A5	Jack Hood - For use with J-5001-A5
J-201		Jack - Same as J-200
J-201A		Jack Hood - Same as J-200,

$\begin{aligned} & \text { SYBBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REI STOCX } \\ \text { NO. } \end{gathered}$	DESCRIPTION
J-202		Jack - Same as J-200
J-202A		Jack Hood - Same as J-200A
J-203		Jack - Same ás J-200
J-203A		Jack Hood - Same as J-200A
J-204	J-5015-11	Jack - pin type, female contact
L-200	I-5028-M3	Choke, Ro F. - 2.5 millihanries
L-202	I-5027-R7	Choke, RoFo-7.5 microhenries
I-203	I-5026-R7	Choke, R. F_{0} - 12.5 microhenries
L-204		Choke - Saine as I-200
I-205		Choke - Same as I-200
R-200	R-5181-A11	Resistor - ifixed, composition, 0.27 meg ohm 1 watt, 10%
R-201	R-5187-A11	Resistor - fixed, composition, 470 onms, 1 watt, 10%
R-202	12-5086-All	Resistor - fixed, composition, 1000 ohms, 1 watt, 10%
R-203	Pm-5185-All	Resistor - fixed, composition, 27,000 ohms, 1 watt, 10%
R-204		Resistor - Same as R-203
R-206	R-5113-A11	Resistor - fixca, composition, 270 ohms, 1 wett, 10%
R-209	R-5234-AII	Resistor - fixed, composition, 100 ohms, 1 watt, 5%
R-210		Resistor - Same as R-209
P-211	R-5193-A11	Resistor - fixed; composition, 2700 ohms, 1 watt, 10%
R-212		Resistor - See 2-202.:
R-213		Resistor - Same as Pr-202
P-214		Resistor - See Z-202
R-21.5	B-5235-A11	Pesistor - fixed, composition, 330,000 ohms, 1 watt, 5%
R-216		Resistor - Same as R-215

$\begin{aligned} & \text { SYMBOI } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REI STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
R-217		Resistor - See 2-203
1-218	R-5236-All	Resistor - fixed, composition, 4700 ohms, 1 watt, 5%
R-219		Resistor - See 2-204
E-220		Resistor - Same as R-218
R-221		Resistor - See 2-205
R-222		Resistor - Same as R-203
R-223		Resistor - Same as R-203
V-200		Tube - Type 707, loctal
V-201		Tube - Type 705: loctal
V-202		Tube - Same as $\mathrm{V}-200$
V-203		Tube - Same as V-200
V-204		Tube - Same as V-200
V-205		Tube - Same as V-200
X-200	$\begin{aligned} & \mathrm{X}-5007-\mathrm{EI} \\ & \text { or } \\ & \mathrm{X}-5047-85 \end{aligned}$	Socket - loctal tube, ceramic. Socket - loctal, mica filled bakelite
X-201		Socket - Same as X-200
X-202		Socket - Same as X-200
X-203		Socket - Same as X-200
x-204		Socket - Same as X-200
x-205		Socket - Same as X-200
X-208	X-5019-M2	Socket - crystal, 2 prong.
Y-200	Y-5000-B4	Crystal, quartz - Frequency dependent upon customers re quirements

$\begin{aligned} & \text { SYMBOI } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REL STOCK } \\ \mathrm{NO} \text {. } \end{gathered}$	DESCRIPTION
2-200	2-5023-55	Tuning assembly, tuning range $192-205 \mathrm{KC}$.
		Consists of:
		Inductance: 2 millihenrics, 3%
		C-203 - Capacitor, variable, air, 5-97 mmf.
		C-204 - Capacitor, fixed, mica, $01 \mathrm{mfd}, 400 \mathrm{VDCW}$,
		C-242 - Capacitor, fixed, ceremic, $240 \mathrm{mmf}, 500$ VDCN. 5\%
2-201	2-5024-55	Tuning Assembly, tuning range 192-205kC
		Consists of:
		Primary Inductance: 1.5 millihenries, 3%
		Secondary Inductance: 4.7 millihenries, 3%
		$\begin{gathered} \text { C-208 - Capacitor, fixed, ceramic, } 350 \mathrm{mmf}, 500 \\ \text { VDCW, } 2 \$ 8 \end{gathered}$
		C-209-Capacitor -variable, air. 5-97 mmf.
		C-210-Capacitor, fixed, ceramic, $10 \mathrm{mmf}, 500 \mathrm{VDCN}$, 5%
		C-2ll - Capacitor, variable, air, 3,6-40 mmf.
2-202	2-5025-S5	Tuning assembly, tunine range 192-205KC
		Consists of:
		Inductance: 8.5 millihenries, $3 \not 0$
		C-218 - Capacitor, fixed, msea, . $01 \mathrm{mfd}, 400$ VDCW, 10%
		C-220-Capacitor, variable, air, 3.6-43 mmf
	-	C-244 - Capacitor, fixed, ceramic, $47 \mathrm{mmf}, 500 \mathrm{VDCH}$, 2\%
		R-212 - Resistor, fixed, composition, 10,000 ohms, 1 watt. 5%
		R-214 - Resistor, fixed, composition, 220,000 ohms, 1. watt, 10%

$\begin{gathered} \hline \text { SYMBOL } \\ \text { NO. } \\ \hline \end{gathered}$	$\begin{gathered} \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPRIOM
2-203	2-5026-55	Tuming Assembly, tuning range 192-205KC
		Consists of:
		Inductance: 2-3.3 millihenry coils, 3% connected series aiding
		$\begin{aligned} & \text { C-221 - Capacitor, variable, air, split stator, } 5-50 \\ & \text { mmf per section } \end{aligned}$
		C-222 - Capacitor, fixed, ceramic, $75 \mathrm{mmf}, 500 \mathrm{VDCH}$, 1\%
		C-223 - Same as C-222
		$\operatorname{Rm} 217$ - $\begin{gathered}\text { Resistor, fixed, composition, } 62,000 \text { ohms, } 1 \\ \text { watt, } 5 \%\end{gathered}$
2-204	2-5027-55	Tuning Assembly - tuning range 5760615 KC
		Consists of:
		Primary Inductance: 1 miliihency, 3\%
		Secondary Inductances 300 microhenries, 5%
		C-230 - Capacitor, fixed, ceramic, $36 \mathrm{mmf}, 500 \mathrm{VDCH}$, 5\%
		C-231-Capacitor, variable, air. 3.4-36 minfo
		R-219 - Resistor, fixed, composition, 47,000 ohms, 1 watt, 10%
2-205	2-5027-55	Puning assembly, same as $2-204$

PARTS LIST FOR SINGIE CHANNEL MULIIPLIER AND BALANCED COIVEETER - CAT. $\$ 588$

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { RBL STOCK } \\ \hline \end{gathered}$	DRSCRIPTION
0-300		Capacitor - See 2-300
C-301		Capacitor - See 2-300
C-302	C-5016-186	Capacitor - fixed, molded paper, . 01 mfd .300 VDCW, 20%
C-303.		Capacitor - Same as C-302
C-304		Capacitor - See 2-301
C-305		Capacitor - See 2-301
0-306		Capacitor - See 2-301
C-307		Capacitor - Sce 2-301
c-308		Capacitor - Same as C-302
C-309		Capacitor - Same as C-302
C-310		Capacitor - Same as 0-302
C-311		Capacitor - See 2-302
C-312		Capacitor - Seez-302
C-313		Capacitor - See 2-302
C-314		Capactor - See 2-302
0-315		Capacitor - Same as C-302
C-316		Capacitor - See 2-303
C-317		Capacitor - See 2-303
C-318		Capacitor - See 2-303
C-319		Capacitor - See 2-303
C-320		Capacitor - Same as 0-302
C-321		Capacitor - Same as C-302
c-322		Capactor - See 2-304

PARTS IIST FOR SINGLE CHANNEL MULTIPLIER AND BALANCED CONVERTER - CAT. \#588

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { REI STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
C-323		Capacitor - See 2-304 Assembly
C-324		Capacitor - Not used
C-325		Capacitor -- See 2-304 Assembly
C-326		Capacitor - Same as C-302
c-327		Capacitor - See 2-305
C-328		Capacitor - See 2-305
0-329		Capacitor - Same as C-302
C-330		Capacitor - See 2-305
C-331		Capacitor - Same as 0-302
C-332		Capacitor - Same as C-302
C-333		Capacitor - Same as 0-302
c-334		Capacitor .. See 2-306
C-336		Capacitor - Same as C-302
c-337		Capacitor - Same as C-302
c-339	0-5047-51	Capacitor - fixed, mica, . $001 \mathrm{mmd} .500 \mathrm{VDCH}, 20 \%$
c-340		Capacitor -. Sane as C-339
c-342		Capacitor - Same as 0-339
C. 342		Capacitor - Same as C-339
E-300	E-5012-J2	Terminal strip, 3 terminals
J-300	J-5001-A5	Jack - female contact, chassis mounting type
J-30CA	J-5017-A5	Jack Hood - for use with part J-5001-A5
J-301		Jack - Same as J-300
J-301A		Jack Hood - Same as J-300A

$\begin{gathered} \hline \text { SYMBCL. } \\ \mathrm{NO} . \end{gathered}$	$\begin{gathered} \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPMION
J-302		Jack - Same as J-300
J-302A		Jack Hood - Same as J-300A
J-303	J-5015-11	Jnck - pin type, female contact, black bakelite insulation
J-304		Jack - Same as J-303
J-305		Jack - Same as J-303
J-306		Jack - Same as J-303
J-307		Jack - Same as J-303
J-308		Jack - Same as J-303
J-309		Jack - Same as J-303
y_{-300}	I-5026-57	Coil, Ro F_{0} - 12.5 microhenries
1-301	I-5027-R7?	Coil, RoF. - 7.5 micronenries
F-300		Resistor - See 2ro300
P-301	R-5189-All	Resistor - fixed, composition, 220,000 ohms, 1 watt, 10%
R-302	P-5185-A11	Resistor - fixed, composition, 27,000 ohms, 1 watt, 10%
F-303		Resistor - See 2-301
R-304		Resistor - See z-301
P-305	R-5112-6.11	Resistor - fixed, composition, 100,000 ohms, 1 watt, 10%
R-306	R-5113-A11	Resistor - fixed, composition, 270 onms, 1 watt, 10%
P-307		Resistor - Same as R-302.
P-308		Resistor - See 2-302
R-309		Resistor - See 2-302
R-310		Resistor - Same as R-305
P-311		Hesistor - Same as R 302
R-312		Resistor - See 2-303

$\begin{aligned} & \text { SYM } \\ & \text { NOL } \end{aligned}$	$\begin{gathered} \text { REL STOCZ } \\ \text { NO. } \end{gathered}$	DESCRIPTION
R-313		Resistor - See 2-303
B-314		Resistor - Seme as Pr305
P-315		Resistor - Same as R-302
R-316		Mesistor - See 2-304
R-317		Resistor - See 2-304
R-318	R-5197-52	Resistor - fixed, composition, 20,000 ohms, 1 watt, 10%
8-319	R-5051-Al1	Resistor - fixed, composition, 10,000 ohms, 1 watt, 10%
R-320		Resistor - Same as R-319
R-321.	R-5119-Al1	Resistor - fixed, composition, 100 ohms, 1 watt, 10%
R-322	R-5060-A11	Resistor - fixed, composition, 22,000 ohms, 2 watts, 10%
R-323		Resistor - Same as R-322
R-324	R-5086-A.1	Resistor - fixed, comoosition, 1000 ohms, 1 watt, 10%
R-325		Resistor - See 2-306
V-300		Tube - type 70?, loctal
V-301		Tube - tyoe 7A7, loctal
v-302		Tube - Same as V-300
V-303		Ture - Same as V-300
V-304		Tube - type 7Q7, loctal
$\mathrm{V}-305$		Tube - Same as V-304
8-300	$\begin{aligned} & X-5007-E 1 \\ & \text { or } \\ & X-5047-\Delta 5 \end{aligned}$	Socket - loctal, ceramic Socket - loctal, mica filled bakelite
x-301		Socket - Same as X-300
x-302		Socket - Seme as X-300
- 303		Soczet - Sane as X-300

$\begin{array}{r} \text { SYMBOL } \\ \text { NO. } \end{array}$	$\begin{gathered} \mathrm{REL} \text { STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
X-304		Socket - Same as $\mathrm{X}-300$
X-305		Socket - Same as X-300
2-300	2-5004-55	Thuing Assembly, tuning range 5760615 KC
		Consists of:
		Primary Inductance: $300 \mathrm{microhenries} ,\mathrm{5} \mathrm{\%}$
		Secondary Inductance: 1 millihenry, 3%
		$\mathrm{C}-300=\frac{\text { Capacitor, fixed, ceramic, } 36 \mathrm{mmf}, 500 \mathrm{VDCW}, ~}{5 \%} \text {, }$
		C-301 - Capacitor, variable, air, 3.4 -36 mmf.
		R-300 - Resistor, fixed, composition, 100,000 ohms. 1 watt. 10%
2-301	2-5005-55	Tuning Assembly, tuning range 172801845 Kc .
		Consists of:
		Primary Inductance: 80 microhenries $\$ 3 \%$
		Secondary Inductance: 80 microhenries $\$ 3 \%$
		c-304 - Capacitor, variable, air $3.6 \times 40 \mathrm{mmf}$.
		$\begin{gathered} \text { C-305 - Capacitor, fixed, ceramic, } 62 \text { mmf., } 500 \\ \text { VDCW, 5\% } \end{gathered}$
		C-306-Capacitor, Same as C-305
		C-307-Capacitor, Same as C-304
		R-303 - Resistor, fixed, composition, 22,000 ohms, 1 vatt, 10%
		R-304 - Resistor, fixed, composition, 47,000 ohrns, 1 watt, 10%

$\begin{aligned} & \text { SYMBOX. } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { REI, STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
z-302	2-5006-55	Tuning Assembly, tuning range 1728-1845KC
		Consists of: Primary Inductance: 120 microhenries, 3%
		Secondery Inductance: 120 microhenries, 3%
		C-311 - Capacitor, variable, ε ir , 3.2-29 mmf.
		C-312-Capacitor, fixed, ceramic, $39 \mathrm{mmf}, 500$ VDCH. 5%
		C-313-Capacitor, Seme as C-312
		C-314 - Cavacitor, Same as C-311
		R-308- Resistor, fixed, composition, 39,000 ohms, 1
		R-309 - Resistor, fixed, composition, 180,000 ohms, 1 watt, 10%
2-303	2-5007-55	Tuning As enbly, tuning range $5184-5535 \mathrm{KC}$.
		Consists of:
		Primary Inductance: 20 microhenries, 3%
		Secondary Inductance: 20 microhenries, 30
		C-316-Capacitor, variable, air, 3-21 mmf.
		C-317 - Capacitor, fixed ceramic, $20 \mathrm{mmf}, 500$ VDCW,
		C-318 - Capacitor, Same as C-317
		C-319 - Capacitor, Same as C-316
		R-312 - Resistor, fixed, composition, 27,000 ohms, 1 wett, 10\%
		R-313 - Resistor, fixed, conposition, 68,000 ohms, 1 watt, 10%

NO. NO.

2-304 Z-5008-s5
z-305

2-306

2-5009-55

2-5010-55

Tuning Assembly, tuning range $15.5-16.6 \mathrm{MC}$ Consists of:

Primary Incuctance: 3 microhenries, 3\%
Secondary Inductance: Same, less one turn
C-322 - Capacitor, variable, air, 2.8-10 mmf.,
C-323 - Capacitor, fixed, œramic, $15 \mathrm{mmf} ., 500$ VDCW,
C-325-Cepacitor, variable, air, $2.8-14 \mathrm{mmf}$.
R-316 - Resistor; fixed, composition, 22,000 ohms,
1 watt. 10%
R-317- Resistor, fixed, composition, 4700 ohms, 1 Tuning Assembly, tuning range 1833-2250KC

Consists of:

Primary Inductance: 40 microhenries, 5%
Secondary Inductance: 120 microhenries, 3%, C.T.
C-327- Capacitor, fixed, ceramic, $51 \mathrm{mmf}, 500$ VDCH,
C-328 - Capacitor, Same as C-327
C-330 - Capacitor, variable, air, $4-50 \mathrm{mmf}$.
Tuning Assembly, tuning range $13.4=14.6 \mathrm{MC}$
Consists of: 盍
Primary Inductance: 4 microhenries, $3 \neq, C . T$.
Secondary Inductance: 5 turn link, interwound on primary.
C-334 - Capacitor, variable, adr, $3.6-43 \mathrm{mmf}$.
$\begin{aligned} & \text { R-325 - Resistor, fixed, composition, } 22,000 \text { ohms, } \\ & \text { l watt. } 20 \%\end{aligned}$

PARTS LIST FOR SINGLE CHANNEL MULTIPLIER
AND SINGLE ENDED CONVERTER - CAT. \#589

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
C-424		Capacitor - See 2-404
C-425		Capacitor - See 2-404
C-426		Capacitor - Same as C-402
C-427		Capacitor - Same as C-402
C-428		Capacitor - Same as C-402
C-429		Capacitor - Same as C-402
C-430		Capacitor - See $2-405$
C-431		Capacitor - See $2-405$
C-433		Capacitor - See 2-406
c-434		Capacitor - See 2-406
c-435		Capacitor - Same as C-402
c-436		Capacitor - See 2-407
c-437		Capacitor - See 2 - 407
0.438	C-5047-51	Capacitor - fixed, mica, . $001 \mathrm{mfa} .500 \mathrm{VRCW}, 20 \%$
0.439		Capacitor - Sama as 0-438
0.440		Capacitor - Same as C. 438
C-441		Capacitor - Same as C-438
5m400	E-5012-J2	Terminal strip, 3 terminals
J-400	J-5001-A5	Jack - female contact, chassis mounting type
J.400A	J-5017-A5	Jack Hood - for use with pare J-5001-A5
J-401		Jack - Same as J-400
J-401A		Jack Hood . Same as J-LOOA
J-402	J-5015-I1	Jack - pin type, female contact
J-403		Jack - Sane as J-402

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \hline \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
J-404		Jack - Same as J-402
J-405		Jack - Same as J-402
J-406		Jack - Same as J-402
J-407		Jack - Same as J-400
J-407A		Jack Hood - Same as J_400A
J-408		Jack - Same as J_402
J-409		Jack - Same as J.402
1-400		Choke Ro F., - Not used
Ir-401	L-5026-R7	Choke, R.F. - 12.5 microhenries
1.402	I-5027-E7	Choke, E. F. - 7.5 microhenries
12-400		Resistor - See 2-400
R-401	R-5116-All	Resistor - fixed, composition, 200,000 ohms, 1 watt, 10%
R-402	R-5185-A11	Resistor - fixed, composition, 27,000 ohms, 1 watt, 10%
R-403		Resistor - See 2-401
R-404		Resistor - See 4 - 402
R-405	R-51120A11	Resistor - fixed, composition, 100,000 ohms, 1 watt, 10%
R-406		Resistor - See 2-406
R-407		Resistor - Same as R-402
R-408		Fesistor - See 2-402
R-409		Resistor - See 2-402
R-410		Resistor - Same as R-405
R-411		Resistor - Same as Pumb

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REI STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
8-412		Resistor - See 2-403
2-413		Resistor - See 2-403
8-414		Resistor - Same as R-405
R-415		Resistor - Same as R-402
2 m 46		Resistor - See 2-404
$3-417$		Resistor - See Z-404
P-418		Resistor - Same as R-405
3-419	E.5190-A11	Resistor - fixea, composition, 560 ohms, 1 watt, 10%
2-420		Resistor - fixed, composition, 20,000 ohms, 2 watt, 10%
3-421	R-5086-A11	Resistor - fixed, composition, 1000 ohms, 1 watt, 10%
$3-422$		Reslstor - See 2m405
$2-423$	E-5084-Al1	Resistor - fixed, composition, 50,000 ohms, I watt, 10\%
$7-400$		Tube - type 707, loctal
T-401		Ture - type 7A?, loctal
7-402		Tube - Same as V-400
T-403		Tube - Same as V-400
$i-404$		Tube - type 78\%, loctal
2400	$\begin{aligned} & x-5007-I 1 \\ & \text { or } \\ & X-5047-15 \end{aligned}$	$\begin{aligned} & \text { Socket - loctal, ceramic } \\ & \text { Socket - loctal, mica filled bakelito } \end{aligned}$
20401		Socket - Same as X-400
8 m 402		Socket - Same as Xolu0
8-403		Socket - Same as Xob400
$\therefore-124$		Socket - Same as X-400

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \mathrm{BRL} \text { STOCK } \\ \mathrm{NO} \mathrm{O}_{2} \end{gathered}$	DFSCRIPTION
2-400	2-5004mS5	Tuning Assembly, tuning range 576-615KC
		Consists of:
		Primary Inductance: 300 microhenries, 5%
		Secondary Inductance: 1 millihenry, 3%
		C-400 - Capacitor, fixed, ceramic, $36 \mathrm{mmf}, 500 \mathrm{VDCH}$, 5%
		```C-401 - Ca.pacitor, variable, air, 3.4-36 mmf. R-400 - Resistor, fixed, composition, 100,000 ohms, l watt, 10%```
$2-401$	Z-5005-S5	Tuning Assembly, tuning range 1728-1845KC Consists of:
		Primary Inductance: 80 microhenries $\overbrace{3 \%}$
		Secondary Inductance: 80 microhenries $\downarrow_{3} \%$
		C-404 - Capacitor, variable, air $3.6-40 \mathrm{mmf}$.
		C-405 - Capacitor, fixed, ceramic, $62 \mathrm{mmf}, 500 \mathrm{VDOH}$, 5\%
		C-406-Capacitor, same as C-405
		C-407 - Capacitor, same es c-404
		R-403 - Resistor, compixed, compition, 22,000 ohms, 1 watt, $10 \%$
		R-404 - Resistor, fixed, cormposition, 47,000 ohms, 1 watt, $10 \%$

2-402 Z-5006-55 Tuning Assembly, tuning range 1728-1845 KC
Consists of:
Primary Inductance: 120 microhenries, $3 \%$
Secondery Inductance: 120 microhenries, $3 \%$
C-410 - Capacitor, variable, air, 3.2029 mmf.


$\begin{aligned} & \text { SYMBOI } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { RBI STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
		C-412-Capacitor, same as C-411
		C-413 - Capacitor, same as C-410
		R-408 - Resistor, fixed, composition, 39,000 ohms, 1 watt, $10 \%$
		R-409 - Resistor, fixed, composition, 180,000 ohms, 1 watt, $10 \%$
2-403	2-5011-55	Tuning Assembly, tuning range $5184-5535 \mathrm{KC}$
		Consists of 8
		Primary Inductance: 20 microhenries, $3 \%$
		Secondary Inductance: 20 microhenries, $3 \%$
		0-416 - Capacitor, variable, air, 3-21 mmf.
		$\begin{aligned} & 0-417- \text { Capacitor, fixed, ceramic, } 20 \mathrm{mmf} ., \\ & 500 \text { VDCW, } 5 \% \end{aligned}$
		C-418-Capacitor, same as $0-417$
		C-419 - Capacitos, same as 0-416
2-404	2-5011-55	Tuning Assembly, tuning range $15.5-16.6 \mathrm{MC}$
		Consists of:
		Primary Inductance: 3 microhenries, $3 \%$
		Secondary Inductance: 3 microhenries, $3 \%$
		0-422-Capacitor, veriable, air 2.8-10 minf.
		$\begin{gathered} \text { C-423- Gapacitor, fixed, ceramic, } 15 \mathrm{mmf} \text {. } \\ 500 \text { VDCH, } 5 \% \end{gathered}$
		$\begin{aligned} 0-424 & - \text { Capacitor, fixed, ceramic, } 10 \mathrm{mmf} ., \\ & 500 \text { VDCW, } 5 \% \end{aligned}$
		C-425-Capacitor, same as C-422
		B-416m Resistor, fixed, composition, 22,000 ohms, 1 watt. $10 \%$
		R-417 - Resistor, fixed, compositio: , 4700 ohms, 1 watt. $10 \%$


$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { REI STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
2-405	2-5012-55	Tuning Assembly, tuning range 1833-2250Kc. Consists of:
		Primary Inductance: 120 microhenries, $3 \%$   Secondary Inductance: 40 microhenries, $5 \%$   0-430 - Capacitor, variable, air, 3.4-32 mmf.   C-431 - Capacitcr, fixed, ceramic, 27 mmf .500 VDCW, 5\%
		R-422 - Resistor, fixed, composition, 39,000 ohns. 1 watr. $10 \%$
2-406	2-5013-55	Tuning Assembly, tuning range 13.4 14.6MC Consists of:
		Primary Inductance: 5 turn link
		Secondery Inductance: 4 microhenries, $3 \%$   C-433 - Capacitor, fixed, ceramic, $6 \mathrm{mmf} ., 500$ VDCW. $5 \%$
		$\begin{aligned} & \text { C-434 - Capacitor, variable, air, } 3.2-25 \mathrm{mmf} \text {. } \\ & \text { R-406 - Resistor, fixed, composition, } 22,000 \text { ohms, } \\ & \text { l watt, } 10 \neq \end{aligned}$
2-407	2-5014-55	Tuned filter unit, tuning range $15.5-16.6 \mathrm{MC}$. Consists of:
		Inductance: 24 tinned wire or $5 / 8^{\prime \prime}$ form, $53 / 4$ turns $1 / 4$ " lone.
		$\begin{gathered} \text { C-436 - Capacitor, fixed, ceramic, } 39 \mathrm{mmf}, 500 \\ \text { VDCW, } 5 \% \end{gathered}$
		C-437-Capacitor, variable, air, 5-97 mmf.

PARTS LIST FOR SEMI FINAL MULTIPLIER - CAT. \#590

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { RELI STOCZ } \\ \text { NO. } \end{gathered}$	DESCRIPIION
C-500		Capacitor - See 2-500
C-501		Capacitor - See 2-500
C-502	C-5016-146	Capacitor - fixed, molded paper, . $01 \mathrm{mfd} .300 \mathrm{VDCW}, 20 \%$
C-503		Capacitor - Same as C-502
C-504		Capacitor - See 2-501
C-505		Capacitor - See 2-501
$0-506$		Capacitor - See 2-501
c-507		Capacitor - See 2-501
c-508		Capacitor - Same as C-502
C-509		Capacitor - Same as C-502
C-510		Capacitor - See 2-502
C-511		Oapacitor - See Z-502
C-512		Capacitor - Same as C-502
0-513		Capacitor - Same as Co-502
C-514		Capacitor - See 2-503
C-515		Capacitor - See 2-503
C-516		Capacitor - Same as C-502
C-517		Capacitor - Same as C-502
C-518		Oapacitor - See 2-504
C-519		Capacitor - See 2-504
C-520		Capacitor - Same as C-502
C-521		Capacitor - Same as C-502
C-522		Capacitor - Same as c-502
C-523		Capactior - See 2-505


$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REL STOCZ } \\ \text { NO. } \end{gathered}$	DESCRIPTION
C-524	C-5047-S1	Capacitor - fixed, mica, . 001 mfd .500 VDCW, $20 \%$
C-525		Capacitor - Same as C-524
0-526		Capacitor - Same as C-524
C-527		Capacitor - Same as C-524
E-500	E-5012-J2	Terminal strip-3 terminals
J-500	J-5001-A5.	Jack - female contact - chassis mounting type
J-500A	J-5017-A5	Jack Hood - for use with part J-5001-A5
J-501	505015 II	Jack - pin type, female contact, black bakelite insulation
J-502		Jack - Same as J-501
J-503		Jack - Same as. J-501
J-504		Jack - Same as J-501
J-505		Jack - Same as J-501
J-506		Jack - Same as J-501
J-507		Jack - Same as J-500
J-507A		Jack Hood - Same as J-500A
I-500	L-5028-M3	Choke, Ro Fo- 2.5 millihenries,
I-501	I-5026-E77	Choke, RoF.- 12.5 microhenries
L-502	I-5027-E7	Choke, RoFo-7.5 microhenties
R-500	B-5112-A11	Resistor - fixed, composition, 100,000 ohms, 1 vatt, $10 \%$
R-501	R-5185-A11	Resistor - fixed, composition, 27,000 ohms, 1 watt, $10 \%$
P-502		Resistor - Same as R-500
R-503		Resistor - Same as Rro 501


$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRTPTION
R-504		Resistor - Same as R-500
R-505		Resistor - Same as R-501
R-506		Resistor - Sae as R-500
R-507		Resistor - Same as R-501
R-508		Resistor - Same as R-500
R-509	R-5115-Al1	Resistor - fixed, composition, 40,000 ohms, 1 watt, $10 \%$
R-510		Resistor - See z-500
R-511		Resistor - See 2-501
R-512		Resistor - See 2-501
R-513		Resistor - See 2-502
B-514		Resistor -- See 2-503
R-515		Resistor - See 2-504
R-516		Resistor - See 2-505
V-500		Tube - type 78.7. loctal
V-501		Tube - type 707, loctal
V-502		Tube - Same as V-501
V-503		Tube - Same as V-501
V-504		Tube - type 7H7, loctal
8-500	$\begin{aligned} & X-5007-E 1 \\ & \text { or } \\ & X-5047-A 5 \end{aligned}$	Socket - loctal, ceramic   Socket - loctal, mica filled bakelite
X-501		Socket - Same as X-500
-502		Socket - Same as X-500
-503		Socket - Same as X-500
- 504		Socket - Same as X-500

SYMBO
NO.

2-501 $\quad 2-5016-55$

2-502 2-5017-S5

Tuning Assembly, tuning range 1833-2250KC Consists of:

Primary Inductance: 40 microhenries, $5 \%$
Secondary Inductance: 120 microhenries, $3 \%$
C-500 - Capacitor, fixed, ceramic, $18 \mathrm{mmf} ., 500 \mathrm{VDCW}$, 1\%

C-501 - Capacitor, variable, air $3.6-40 \mathrm{mmf}$.
R-510 - Resistor fixed, composition, 180,000 ohms, 1 watt. $10 \%$

Thaning Assembly, tuning range 1833-2250KC Consists of:

Primary Inductance: 120 microhenries. $3 \%$
Secondary Inductance: 120 microhenries, $3 \%$
C-504 - Capacitor, variable, air $3.6-40 \mathrm{mmf}$.
C-505- Capacitor, fixed, ceremic, $15 \mathrm{mmf} ., 500 \mathrm{VDCW}$.
C-506 - Capacitor, same as C-504
C-507 - Capacitor, same as c-505
P-511 - Resistor, fixed, composition, 39,000 ohms, 1
watt, $10 \%$
R-512 - Resistor, fixed, composition, 180,000 ohms, 1 watt. 10\%

Tunine Assembly, tuning range $3067-4500 \mathrm{KC}$

## Consists of:

Primary Inductance: 40 microhenries, $3 \%$
Secondary Inductance: 40 microhenries, $3 \%$
C-510 - Capacitor, variable, air, $3.4-36 \mathrm{mmf}$.
C-511. - Capacitor, same as C-510
R-513 - Resisior, fixed, composition, 47,000 ohms, 1 Section VII $500=4$

$\begin{aligned} & \text { SYMBOI } \\ & \text { NO. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
z-503	2-5018-55	Tuning Assembly, tuning range 7300-9000 KC
		Consists of:
		Primary Inductance: 13 microhenries, $3 \%$
		Secondary Inductance: 13 microhenries, $3 \%$
		O-514 - Capacitor, variable, air $3.4-32 \mathrm{mmf}$.
		C-515 - Capacitor, same as C-514
		R-514. - Resistor, fixed, composition, 100,000 ohms, 1 watt, $10 \%$
2-504	2-5019-55	Tuning Assembly, tuning range 14.6 -18.0MC
		Consists of:
		Primary Inductance: 3.5 microhenries, $3 \%$
		Secondary Inductance: 3.5 microhenries, $3 \%$
		C-518-Capacitor, variable, air 3.4-32 mmf.
		C-519 - Capacitor, same as C-518
	$\cdots$	R-515 - Resistor; fixed, composition, 47,000 ohms, 1 watt, 10\%
Z-505	2-5020-S5	Tuning Assembly, tuning range 14.6018 .0 MO
		Consists of:
		Primary Inductance: 3.5 microhenries, $3 \%$
		Secondary Inductance: 5 turn link
		C-523-Capacitor, variable, air 3.4 - 32 mmf .
		$\begin{aligned} & \text { R-516 - Besistor, fixed, composition, } 47,000 \text { ohms, } 1 \\ & \text { watt, } 10 \neq \end{aligned}$

FINAL MULTIPLIER PANEL CAT. 591A

$\begin{gathered} \hline \text { SYMBOL } \\ \text { HO. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { REL STOCI } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
c.600		Capacitor - part of 2-600
c-601	C-5047-S1	Capacitor - fixed, mica, . 001 mfd., $500 \mathrm{VDCN}, 20 \%$
C-602	C-5016m6	Capacitor - fixed, molded paper, . 01 mfd., 300 VDCH, 20\%
$0-603$		Capacitor - Same as C-601
c-604		Capacitor - Same as C-602
c-605	C-5089-H2	Capacitor - variable, air, 35 mmfa .
c-606		Capacitor - Same as C-601
c-607	C-5068-E2	Capacitor -- variable, air oplit otator, 35 mmfi . per section
c-608		Capacitor - Same as C-601
C-609		Capacitor - Same as C-607
C-610	$0-51210081$	Capacitor - fired, ricz, . 001 mfa .1200 VDCH, 203
C-611		Capacitor - Same as C-607
$0-612$		Capacitor - Same as C-607
c-613		Capacitor - Same as C-601
C-6.14		Capacitor - Same as Cubl
c-615		Capacitor - Same as C-601
C-616		Capacitor - Same as Co601
c-617		Capacitor - Same as C-610
c-618		Capacitor - Same as Comio
c-619		Capacitor - Same as C-610
c-620		Capacitor - Same as C-601
c-621		Capacitor - Same as C-601
C-622		Capacitor - Same as C-602

FINAL MULTIPLIER PANEL CAT. \#59LA

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { REL STOCZ } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
c-623		Capacitor - Sarne as C-601
C-624		Capacitor - Same as C-601
c-625		Capacitor - Same as C-601
C-626		Capacitor - Same as C-605
0-627		Capacitor - Not used
a-628		Capacitor - Same as C-602
E. 600	E-5003-J2	Terminal strip-5 terminals
J-600	J-5001-A5	Jack - for coaxial cable female contact, chassis mounting type.
J-600	J-5017-15	Jack Hood - for part J-5001-A5
J-601	J-5015-II	Jack - pin type, female contact, black insulation bakelite
J.602		Jack - Same as J-601
J-603		Jack - Same as J-601
J-604		Jack - Same as J-600
J-604A		Jack Hood - Same as J-500A
J-605		Jack - Same as J-600
J-605A		Jack Hood - Same as J-600太
Ir600		Coil, R.F. - tuning range $29.2-36$ MC, when used with 35 mmfd. variable condenser
I-600A		Coil, R.F. - coupling link mtd. with Ir. 600
1-601		Coil, B. F., C. $\mathrm{C}_{\mathrm{T}}$ - tuning range $29.2-36 \mathrm{MC}$, when used with 35 mmfd . section split stator variable condenser
Im601A		Coil. R.F. - coupling link mtd. with Im601
1-602		Coil, R.F., C.T. - tuning range $88-108$ MC, when used with 35 mmfa. section split stator variable condenser


$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPPION
1-602A		Coil, R.F. - coupling link mtd. with L-602
L-603		Coil, R.F. - tuning range $88-108 \mathrm{MC}$, used with $35 \mathrm{mmfa} /$ section split stator variable condenser
Im603A		Coil, R.F. -- coupling link mtd. with L-603
I-604		Coil. Ro Fo - tunine range $88-108 \mathrm{MC}$, when used with 35 $\mathrm{mmfa} /$ section split stator variable conden ser
I-604A		Coil, R.F. - output coupling link
L-605	I-5018-01	Choke, RoF. - 2.3 microhenries
I-610	I-5026-R?	Choke, R.F.- 12.5 microhenries
I-611		Choke, Ro Fo- Same as L-610
I-5]. 2		Choke, R.F. - Same as L-610
2-613	I-5027-R7	Choke, R.F. - 7.5 microhenries
M-600	N-5005-12	Meter - 300 Ma , full scale, $2 \%$
N-601		Meter - Same as M-600
R-600	P-5084-A11	Resistor - fixed, composition, 50,000 ohms, 1 watt, $10 \%$
R-601	R-5113-A11	Resistor - fixed, composition, 270 ohms, 1 watt $10 \%$
R-602	E-5139mAll	Resistor - fixed, composition, 6800 ohms, 2 watt, $10 \%$
R-603	R-5141-C18	Resistor - fixed, composition, 22,000 ohas, 5 watt, $20 \%$
P-604		Resistor - Same as R-602
R-605	R-5010-All	Resistor - fixed, composition, 6200 ohms, 2 watt, $5 \%$
R-606	R-5170-All	Resistor - fixed, composition, 1000 ohms, 1 watt, $20 \%$
R-607		Resistor - Same as , R-606
S-600	S-5015-A19	Switch - tockle, SPST, 3A at 250 V

PARTS LIST
FINAL MULTIPLIER PANEL - CAT. 591A

$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { PEL STOCK } \\ \text { NO. } \\ \hline \end{gathered}$	DFSCRIPTION
V-500		Tube - loctal, type 705
V-601		Tube - type 829B
V.-502		Tube Same as V-601
X-600	$\begin{aligned} & X-5007-E 1 \\ & \text { or } \\ & X-5047-A 5 \end{aligned}$	Socket - loctal, tube, ceramic   Socket - loctal, mica filled bakelite
X-601	$x-5011-54$	Socket - ceramic, 7 prong, small transmitting
x-602		Socket - Same as X-601
2-600	2-5021-35	Tuning Assembly, tuning range 14.6-18.0 MC
		Consists of:
		Primary Inductance: 5 turn link   Sccondery Inauctance: 3.5 microhenries, $3 \%$
		c-600-Capacitor, variable, air $3.4-32 \mathrm{mmf}$.

PARTS LIST FOR MODULATOR POWER
SUPPLY UNIT - CAT. \#592


$\begin{aligned} & \text { SYMBOL } \\ & -\mathrm{NO} . \end{aligned}$	$\begin{aligned} & \text { REL STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
1-701.		Choke, A.F. - Same as In-700
I-702	I-5015-C14	Choke, A.F. - smoothing, 50 millihenries, $5.4 \mathrm{amps}, 0.5$ ohms. DC, resistance tolerance $10 \%$
R-700	R-5098-S?	Resistor - fixed, wire wound, 50,000 ohms, 10 watt, $10 j^{\prime}$
B-701	R-5099-All	Resistor - fixed, composition, 1 meg ohm, 1 watt, $10 \%$
B-702	R-5100-A1.	Resistor - fixed, composition, 1500 ohms, 1 watt, $10 \%$
R-703		Resistor - Same as Rop02
8-704		Resistor - Same as R-702
B-705		Resistor - Same as R-702
P-706	R-5060-A11	Resistor - fixed, composition, $22,000 \mathrm{ohm}, 2$ watt, $10 \%$
R-707	R-5101-A11	Resistor - fixed, corposition, 150,000 ohm, 1 watt, $10 \%$
P-708	R-5102-A11	Resistor - fixed, composition, 68,000 ohn, 1 watt. $10 \%$
P-709	R-5103-06	Resistor = variable, wire wound, $25,000 \mathrm{ohm}$, max. current 11 MoA。, linear taper. $10 \%$
Pm710		Resistor - Same as R-707
P-711	R-5111-01	Resistor - variable vire wound, 6 ohms, 25 watts, 2 amps mex., 10\%
5-712	R-5237-02	Resistor - variable, wire wound 150 ohms, 50 watis, $10 \%$
P-713	R-5335	Resistor - fixed, wire wound, 50 ohms, 25 watts, 100
2-714		Resistor - Same as R-713
3775	R-5333-12	Resistor - adjustable, wire wound, 600 ohms, 10 watts, $10 \%$
=-700	T-5024-C14	Transformer, filament-Pri. 208V, 60 cycles, single phase; Sec. M1, 2.5V, 101 - Sec. \#2, 6.3V, 4.0A C.T. - Sec. $\mathrm{H}_{3} 3,6.3 \mathrm{~V}, 9.0 \mathrm{~A}$ Insulation test 2000 volts


$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
T-701	T-5025-C14	Transformer, filameni - Pri. 208 volts, 60 cycles, single phase; Sec. 18 volts, 6.5 amps C.T. - Insulation test 2000 volts
	or	ABOVE FOR SETS SELIAL $\# 6877,6880,6879,6878,6883$.   ALL OTHERS USE: 6884, 6885
	T-5053-C14	Transformer, filament - Pri. 200/208 volts, 60 cycles, single phase - Sec. $19.5 \mathrm{~V}, 6.5 \mathrm{~A}$ C.T. - Insulation test 1000 volts
T-702	T-5026-C14	Transformer, plate - Pri. 208 volts, 60 cycles , single phase-Sec. 550-0-550 volts AC RMS, 650 MA - Insulation test 5000 volts
T-703	T-5027-C14	$\begin{aligned} \text { Transformer, crystal heater - } & \text { Pri. } 208 \text { volts, } 60 \text { cycles, } \\ & \text { single phase - Sec. } 6.3 \text { volts, } \\ & 2.0 \mathrm{amps} \end{aligned}$
V-700		Tube - rectifier, type 3825
V-701		Tube - Same as $\nabla_{0} 700$
V-702		Tube - regulator, type 6I6, or 6B4G
$\mathrm{V}-703$		Tube - Sane as V-702
V-704		Tube - Same as V-702
V-705	-	Tube - Same as V-702
V-706		Tube - loctal, type 7F8
$\mathrm{V}-70^{\prime} 7$		Tube - type \%r-105
$x-700$	X-5005-A5	Socket - 4 prong, meaium, ceramic
X-701		Socket - Same as X-700
x-702	X-5006-U5	Socket - octal, ceramic
	$\stackrel{\text { or }}{\text { X }} \mathrm{5060-A5}$	Socket - octal, mica filled bakelite

PARTS LIST FOR MODULATOR POWER
SUPPLY UNIT - CAT. \$592


PARTS LIST FOR MODEL 518
1000 WATT FM TRANSMITTER

$\begin{aligned} & \hline \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
B-800	B-5001-A21	Blower - centrifugal, 457 CFM against $3^{\prime \prime}$ static oressure, Equipped with $208 / 230$ volt, single phase, 60 cycle, 3450 RPM, 1/2 H.P. Motor
	$\stackrel{\text { or }}{\text { B-5002-A21 }}$	Blower - centrifugal, 463 Cm against $3^{\prime \prime}$ static pressure, Sirocco type, equipped with $208 / 230$ volt, 60 cycle, single phase, 3 l. $50 \mathrm{RPM}, 1 / 2 \mathrm{H} . \mathrm{P}$. Motor.
C-800	C-5103-I4	Capacitor-fixed, paper, 0 il filled, 4 mfd., 5000 VDCW, $10 \%$
C-801		Capacitor - Same as C-800
C-802	C-5096-I4	Capacitor - fixed, paper, oil filled, 8 mfd. $1000 \mathrm{VDCH}, 10 \%$
C-803		Capacitor - Same as Cos 802
Cos804	C-5104-14	Capacitor - fixed, paper, oil filled, $8 \mathrm{mfd} .600 \mathrm{VDCW}, 10 \%$
C-805		Capacitor - Same as C-804
C-806	C-5047-51	Capacitor $=$ fixed, mica, . $001 \mathrm{mfd} .500 \mathrm{VDCN}, 20 \%$
C-807		Capacitor - Same as C-806
C-808		Canacitor - Sane as C-805
C-809		Capacitor - Same as C-806
a.810		Cepheitor - Same as Como6
c-811		Canacitor - variable, eir, $3^{\prime \prime}$ diameter discs.
C-812		Canacitor - fixed, "Tefion dielectric" approximately 100 mmf .
C-813	- -	Cepacitor - fixed, Fingialta dielectelc, "approsirately 400 mmf .
C-814		Capacitor - Same às Cosil
C-815		Capacitor - Same as C-811
C-. 816		Capacitor - Same as C-811
C-817	C-5251-H2	Capacitor - variable, air, 100 mmf 。
C-818		Capacitor - Same as 0-817


--	$\begin{aligned} & \hline \text { SYMBOL } \\ & \text { NO. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { REL STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
!-	C-819	C-5100-S1	Capacitor - fixed, mica, . $001 \mathrm{mfd}, 10,000$ VDCW, $10 \%$
	C-820	C-5230 51	Capacitor - fixted; mica, $0.0001 \mathrm{mfd}, 2500$ VDCW, $20 \%$
	$0-821$	C-5193-14	Capacitor - fixed, paper, 011 filled, . $25 \mathrm{mfd}, 6000 \mathrm{VDCW}, 20 \%$
	C-822		Capacitor - Same as C-813
	C-823		Capacitor - Not used :-
	C-824		Capacitor - Not ueed .
	C-825	C-5000-M5	Capacitor - fixed, ceramic, $1200 \mathrm{mmf}, 300 \mathrm{VDCW}, 20 \%$
	C-826		Capacitor - Same as C-820
	C-827		Capacitor - Same as C-E20
	C-828		Capacitor - Same as C-820
	E-800		Terminal board - $2-1 / 4 \times 20$ stud terminals
	E-801.	E-5001-J2	Terminal strip - 8 terminalo
	5-802	E-5003-J2	Terminal strip-5 terminals
	E-803		Terminal strip - Same as Em -801
	E-804		Terminal strip - Same as Em801
	F-805		Terminal strip - Same as Em801
	E-806		Terminal strip .- Same as Him01 - Not used in later units
	E-807		Terminal strip - Not used
	8-808		Terminal strip-1 strip, 18 terminals, 1 strip 6 terminals
	E-809		Terminal strip - Not used
	E-810		Terminal strip - Same as Em802
	E-811		Terminal strip-2 terminals
	E-812	E-5012-J2	Terminal strip - 4 terminals
	E-813	E-50040.J2	Terminal strip - 3 terminals
	E-814		Terminal strip - Same as R-8.13


$\begin{aligned} & \hline \text { SYMBOI } \\ & \mathrm{NO} . \\ & \hline \end{aligned}$	$\begin{gathered} \text { RBL STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPIION
E-815		Te,minal atrip - Same as E-813
E-816		Terminal strip-Same as E-813
E-817		Terminal strip - Same as E-812
E-818		Terminal strip - Same as E-812
E-819		Terminal strip - Same as $\mathrm{L}_{\text {- }} 802$
F-801	F-5003-13	Fuse - glass enclosed, 3 ampere, 250 volt
F-802	F-5000-L3	Fuse - glass enclosed, 1 ampere, 250 volt
F-803		Fuse - Same as F-801
F-804		Fuse - Same as F-801
F-805	F-5010-13	Fuse - glass enclosed, 5 arpere, 250 volt
1-806	F-5002-I3	Fuse - glass enclosed, 1/2 ampere, 250 volt
1-807	F-5007-B11	Fusetron - cartriage type, 15 ampere, 250 volt
F-808		Fusetron - Same as F-807
F-809	F-5012-L3	Fuse - tiny cartridge tyoe, bakelite enclosed, 15 ampere, 250 volt
F-810		Fuse - Sane as F-809
I-500	I-5004-62	Lamp - pilot light, candelabra base, 115 volts, 6 watts
I-801		Lamp - Same as I-800
I-80'2		Lamp - Same as I-800
1-803		Lamp - Same as I-800
I-804	I-5009-G2	Lamp - pilot light, double contact, bayonet base, $6-8$ volts
I-805	I-5010-G2	Lamp - illuminatins, lumiline type, 115 volts, 40 watts
1-806		Lamp - Same as I-805
I-80?		Lamp - Sarae as I-805


$\begin{aligned} & \mathrm{MBOL} \\ & 0 . \end{aligned}$	$\begin{gathered} \mathrm{RBL} \text { STDCK } \\ \mathrm{NO} . \end{gathered}$	DESCRIPTION
804	$\begin{aligned} & \text { K-5019-A11 } \\ & \text { or } \\ & \text { Z-5043-F3 } \end{aligned}$	Relay - open type, contacts rated 25 amps, 250 volts, AC, 2 pole, N.O. coll for $208 / 230$ volts, 60 cycles.
805	K-5020 A11 $\stackrel{\text { or }}{\mathrm{K}-5059-\mathrm{it2}}$	Relay - overload, dashpot type, adjustable trip, adjusted for 600 ma , self resetting contacts rated 3 amps, 250 volts, AC, one pole N.C.   Relay - overload, direct current, self resetting contacts rated 3 amps, 250 volts, AC, SPDr, range adjustable from 0.5-2 amps.
806	$\mathrm{K}-5021-\mathrm{Al1}$	Relay - motor starter, open type, with 4.47 amp thermal overload elements. contacts rated 15 amps, 250 volts. AC, 3 pole N.O., coil for $208 / 230$ volts, 60 cycles.   Relay - motor starter, open type, with 5 anp thernel overload elenents, contacts rated 15 amps, 250 volts, AC, 3 pole, N. O. coil for $208 / 230$ volts, AC.
807	K-5023-51 $\stackrel{\text { or }}{\text { K-5038-A23 }}$	Relay - time delay, synchronous, adjustable, motor for 230 volts, 60 cycles, contacts rated 2.5 amps, 250 volts, AC, SPST, N.O.   See alternate K-80l
800	I-5016-014	Choke, A.F。- smoothing, 15 henries, $600 \mathrm{ma}, 200$ ohms DC resistance, insulation test 10,000 volts.
801.		Choke A.F. - Same as Im800
802	I-5017-014	Choke, A.F.- smoothing, 8 henries, $250 \mathrm{ma}, 100$ ohms, DC resistance, insulation test 2000 volts.
803		Choke, A.F. - Same as I-802
804		Choke, A. $\mathrm{F}_{0}$ - Same as Lre 802
805		Choke, A.F. - Same as I-802
806		Lines, R.F. - final amplifier plate circuit
. 807		Output coupling link
. 808		İnes, R.F. - final amplifier grid circuit


$\begin{aligned} & \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REI STOCK } \\ \text { NO. } \\ \hline \end{gathered}$	DESCRIPIION
I．r809		Input coupling link
I－810		Choke，R．F．－plate
$1-811$	1－5066－E9	Choke，R．F．－ 3 microhenries，25\％
L－812		Choke，R．F．－Same as 1－811
I－813		Not used
Im814		Monitor coupling link
M－800	M－5009－W2	Meter，AC volts－ $0-7.5$ volts， 60 cycles， $2 \%$
M－801	M－5010－W2	Meter，DC milliammeter－0－50 ma， $2 \%$
M－802	M－5011－W2	Heter，DC milliamneter－ $0-600 \mathrm{ma}, 2 \%$
N－803	M－5012－S2	Meter，DC volts－ $0-1$ milliampere movement fitted with 0.5000 volt scale， $2 \%$ ，used with ex－ ternal multiplier
$\mathrm{M}-804$	$\begin{aligned} & M-5013-N 2 \\ & \text { or } \\ & M-5054-W 2 \end{aligned}$	Meter，DC milliameter，－ $0-1 \mathrm{ma}, 2_{*}^{*}$   Meter，$D C$ milliammeter ．． $0-1 \mathrm{ma}, 2 \%$ with special scale
$\mathrm{N}-805$	M－5007－H2	Meter，DC milliammeter－ $0-100 \mathrm{ma}, 2 \%$
P－800	P－5002－85	Plug－coaxial，single male contact
P－801	P－5009－85	Plue－twin male contacts
P－802	P－5011－A5	Plug－coaxial， $90^{\circ}$ elbow，single male contact
P－803		Plug－Same as P－802
P－804		Plug－Same as P－802
P－805		Plug－Same as P－802
R－800	$\begin{gathered} \text { R-5104-12 } \\ \text { or } \\ \text { R-5273-06 } \end{gathered}$	Resistor－fixed，wire wound， 200,000 ohms， 120 watts， $5 \mathcal{\beta}$   Hesistor－fixed，wire wound， 200,000 ohms， 160 watts， 100
R－801	R－5105－I2	```Resistor .- fired, wire wnund, 5 meg ohms, max. current 1.0 milliampere 0.5%```

Section VII 800－6

$\begin{aligned} & \text { SYMBOL } \\ & \mathrm{NO} . \end{aligned}$	$\begin{gathered} \text { BEI STOCX } \\ \text { NO. } \\ \hline \end{gathered}$	DESCRIPTION
B-802	R-5089-AlI	Resistor - fixed, composition, 10,000 ohms, 2 watts, 10 \%
R-803	$\begin{aligned} & \text { R-5097-I2 } \\ & \text { or } \\ & \text { R-5269-C6 } \end{aligned}$	Resistor - fixed, wre wound, 500 ohms, 120 watts, $5 \%$ Resistor - fixed, wire wound, 500 ohms, 160 watts, $10 \%$
R-804	R-5098-S?	Resistor - fixed, wire wound, 50,000 ohms, 10 watts, $10 \%$
B-805	R-5109-12	Resistor - fixed, wire wound, 250 ohms, 40 watts, $5 \%$, fer rules for 60 ampere fuse clips
	$\stackrel{\text { or }}{\text { B- } 5271-C 6}$	Resistor - fixed, wire wound, 250 ohms, 40 watts, $10 \%$, ferm rules for 30 ampere fuse clips
R-806		Resistor - Same as R-805
R-807	R-5321-C6	Resistor, fixed, wire wound, 500 ohms, 20 watts, $10 \%$
R-808		Resistor - Same as R-805
Rm09		Resistor - Same as R-805
R-810		Resistor'- Same as R-807
R-811	R-5269-c6	Resistor - fixed, wire wound, 500 ohms, 160 watts, $10 \%$
R-812		Resistor - Same as R-81l
8-813	R-5270-C6	Resistor - fixed, wire wound, 2500 ohms, 10 watts, $10 \%$
P-814		Resistor - Same as R-813
R-815		Reststor - Same as R-813
R-816	R-5334-12	Resistor - fixed, coraposition, 5.1 ohms, 1 watt, $10 \%$
R-81?		Resistor - Same as Ro8l3
R-818	R-5336-57	Resistor - fixed, wire wound, 1250 ohmis, 50 watts, $10 \%$
R-819	R-5337-57	Resistor - fixed, wire wound, 2000 ohms, 50 watt, $10 \%$
R-820		Resistor - Same as Rr-807
Rm821	R-5331-C6	Hesistor - variable, wire wound, 5000 ohns -
S-800	S-5010-H8	Switch togele - SPST, rated 20 amperes, 250 volts


$\begin{gathered} \text { SYMBOI } \\ \text { NO. } \\ \hline \end{gathered}$	$\begin{gathered} \text { REI STOOI } \\ \text { NO. } \end{gathered}$	DFSCRIPTION
S-801		Suitch - Same as S-800
S-802	S-5052-A18	```Switch - cabinet light interlock, l pole, N.C., 5 amps, 250 volts, AC```
S-803		Switch -- Same as S-802
S-804	S-5031-A18	Switch - door interlociz, 1 pole, N.O., 5 amps, 250 volts AO
S-805		Switch - Same as S-800
S-806		Switch - Same as S-804
S-807		$\begin{gathered} \text { Special air switch - sail type, with mercury switch rated } 5 \\ \text { arme, } 250 \text { volts } \end{gathered}$
S-808	S-5013-H8	Swltch, togele - DPST, 20 anperes, 250 volts, $A C$
S-809		Switch - Same as S-804
S-810		Switch - Sawe as S-804
S-812		Suitch - Same as S-804
S-812		Suitch - Same as Sm804
S $=813$		Switch - Same as S-804
S-814		Switch - Same as S-804
S-815		Switch - Same as S-802
S-816	S-5057-117	Switch - rotary, snap, 3 position, one pole, contacts rated 30 amps, 550 volts, AC
S-817	$S-5045-817$	Switch - rotsry, snap, 3 position, 2 pole, with 1 section having shorting contacts, rated 10 amperes, 250 volts AC
T-800	T-5028-C14	Transformer, rectifier filament - Pri. 208V, 60 cy . single phase o Sec. W, 5.0V, 3.0A-Sec. 有2, 5.0V, 3.0A - Insulation test 2000 volts
T-801	T-5029-624	Transformer, filanent-Pri. $208 \mathrm{~V}, 60 \mathrm{cy}$, single phase - Sec. 5.0 V 24.5 A CT . Insulation test 1000 volts



$\begin{aligned} & \hline \text { SYMBOL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { REI STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION
8-805		Socket - Same as X-804
8-806	X-5012-G7	Socket - pilot light assambly, candelabra base, lll green indicator jewel
$x-807$	X-5013-G7	Socketit pilot light assembly, candelabra base, Il clear indicator jewel
x-808	$X-5014-G 7$	Socket - pilot light assembly, candelabra base, I" red indicam intor jewel
x-809	X-5061-97	Socket - pilot light assembly, 2 prong bayonet base, I" amber indicator jewel
X-810	X-5017-G7	Socket - pilot light assembly, candelabra base, Il blue indicam tor jewel
8-811	X-5021-H8	Socket - meter and illuminating lichts, lumiline lamp holder fitted with bakelite cap
8-812		Socket - Same 29 X-811
X-813		Socket - Same as X-811
X-814		Socket - Same as X-8il
X-815		Socket - Samo as Xn 811
X-816		Socket - Same as X-811
X-817		Socket - Same as X-811
X 0818		Socket - Same as X-811
X-819		Socket - Same as X-811
8-820		Socket - Same as X-811
Y-800		Crystal - Eerminium, rectifier, type 1 N 34
YP-800	$\ddot{Y} R=5000-63$	Voltage regulator - variable, 2.0 KVA , Inp̣ut 230 volts, 60 cycles output $0-270$ volts, 60 cycles

MAINTENANCE OF EQUIPMENT - ORDERING SPARE OR REPIACERTAT PARTS - PRO GEDURE FOR REIURN OF MATERIAI.

## MAINTENANCE OF EQUTPMEMP

Normal maintenance requires periodic inspection of equipment with careful scrutinito of the various components to detect signs of overload or imminent failure.

Components which require periodic maintenance are tabulated below. Where applicable this equipment, instructions given should be followed.

KOTORS, PUMPS AND BIONERS - rotating machinery of this type may require periodic ubrication if not of the sealed roller bearing type. Follow lubrication instrucfions attached to machine.

RCHANICAL DRIVE SYSTEMS - Panel bearings, shafting, belt pulley and chain drive rrangements require occasional lubrication with a few drops of light machine oil. o not apply oil to sliding contacts found in Radio Frequency "Line" assemblies.

ECHANICAI CONNECTIONS - Terminal strips should be inspected occasionally for loose pgs, broken or badly frayed. wires. Chuck or clamp type plate and grid lead conpetors should be tried for secure fit. Coaxial cables may break loose from plug asemblies if subject to repeated handling or flexing.

BIAYS-CONTACTORS - Delays and contactors with enclosed contacts do not require vicing for the life of equipment. Telephone type relays and other exposed conm ct relays may require occasional cleansing or burnishing of contact surfaces. nd paper strips saturated in pure ethyl alcohol may be aram between contacts ile holding relay closed normally.

Electro-pneumatic and oilodashpot type timing relays should be checked for mainten of correct timing interval. Adjustment instructions for these items are found in Secm $V$ of this manuel.

SISTORS - ION Voltage resistors should be examined for discoloration of paint indicato弓 overloaded operating conditions. Large size pluzoin sticks should be checked for jse ferrules and clean contact surfaces.

LANSING - The necessity for maintaining equipment in clean condition should be llous. Dust and dirt will definately have a deletorous effect on the operation 'most electronic comocnents. The necessity and frequeney of cleaning operations l vary with the type and location of equipment. Equipment in pressurized cabim s with air filters on intake and exhaust ducts will require less service than ack mounted receiver.
ir filters may be cleaned by immersing in gasoline to wash out dust and old oil. lean stand up to drain then reimerse in SAE 30 motor oll. Again stand to drain. ff excess and reinstall.
pecial attention should be paid to wiping dust off of insulators in high voltage cirfand also glass envelopes on vacuum tubes having plate and grid caps.

When cleaning vacuum tube envelopes an excellent opportunity presents itm self for an examination and check for loose or corroded tube or tube socket pins.

The more carefully "Preventive Maintenance" is performed, the less service and trouble shooting aill be encountered.

## 2. ORDERING SPARE OR PEPIACPMENT PARTS

All components used in R.E.L. equipment have been assigned REL Stock Numbers, and are designated as such ef ther on the component itself, or if impracticable, on the Tabular Iist of Parts of this Instiuction Mamal. When ordering spare or replacement parts, please state quantity and REI Stock Number to insure exact duplication.

Another method of ordering components when the above is impracticable is as follows:

All components used in REI equipment are designated on the Tabular List of Parts and Wiring Diagrams as a circuit symbol i.e. R-100, 0-500, C-300, etc. This symbol may be used.in ordering spare or replacenent parts, however, the catalogue nuraber of the equipment must be stated.

## 3. PROCFDURE FOR RETURM OF MATERLAL

In the envelope attached to the rear cover, are copies of forms used by REI in dealing with return of defective materials used in our catalogued articles.

If for any reason you have a reject which is due to faulty manufacture or a direct fault of manufacture, please forvard this information in the "NOTIFICATION" form letter. Within ten days we will notify you of that disposition is to be made.

NOTE: Do not forward the rejects to us before being notified by our acceptance leto ter. This will save you cost of shipping in certain cases where a return in not rew quired, and also permits us to keep our records in order.

When you receive our disposition notice requesting that the subject material ray be returned, the "RETURN MATERIAL REPOFI" is to be forwarded us, packed with material itself, along with your regular packing slip via either Parcel Post or Railmay Express Prepaid. In certain cases, additional information may be required in order for us to complete our examination. Forms will be forwarded for compliance.

